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GUEST EDITORIAL

PATTERN RECOGNITION: PART |

Three special issues of the SAIEE Africa Research Journal,
entitled Pattern Recognition: Part I, Pattern Recognition
Part 1l and Pattern Recognition: Part Ill, are devoted to
selected papers from the Pattern Recognition Association of
South Africa’s 2006 workshop held in Parys, South Africa
from 29 November to 1 December 2006. This workshop
was peer-reviewed and each paper was reviewed by at least
two reviewers. Reviewers could recommend a reviewed
paper to the technical chairs for publication in this special
issue of the SAIEE Africa Research Journal. The selection
process consisted of two rounds, the first round of which
formed the normal review process for papers submitted
to be considered for PRASA 2006. The second round
applied only to papers that were recommended for journal
publication. The second round of screening served the
purpose of requesting authors to update their manuscripts
and for reviewers to verify that all requests have been
addressed. A total of 67 papers (44 presentations and 23
posters) were accepted for the workshop. A total of sixteen
papers passed the second round of the review process for
publication in these special issues.

The first six papers appear in this special issue, Volume 98
Number 2 of the SAIEE Africa Research Journal, Pattern
Recognition: PartI. The remaining ten papers will appear in
Volume 98 Numbers 3 and 4 of the SAIEE Africa Research
Journal, Pattern Recognition: Part Il. Parts | and Il contain
a diversity of papers in the field, whereas Part III focuses
exclusively on Human Language Technologies.

Subdivision schemes are widely used in various
applications such as data fitting, computer graphics and
solid modelling, to name a few. In the first paper in this
issue, entitled Subdivision of Curves and Surfaces: An
Overview, Herbst, Hunter and Rossouw demonstrate
the basic ideas of subdivision schemes for curves. They
consider both interpolatory and corner-cutting schemes as
well as their adaptation to finite sequences. Some specific
examples of surface subdivision are also discussed.

The problem of automated classification of froth into
different classes as part of process control in chemical plants,
inmany different applications, has been receiving ever more
attention during the past few years. In their paper entitled
Unsupervised Classification of Dynamic Froths Forbes and
de Jager show that unsupervised classification algorithms
can be used to automatically detect a user specified number
of froth classes. Some interesting relationships between

froth structure and statistical indicators are highlighted
based on their experimental results.

Dealing with missing data in data sets is a problem that
researchers frequently run into. In Fuzzy ARTMAP and
Neural Network Approach to Online Processing of Inputs
with Missing Values, Nelwamondo and Marwala propose
an ensemble-based approach for dealing with missing data,
without prediction or imputing the missing values. This
scheme is suitable for online operations of neural networks
and hence well suited for online applications, for example,
online condition monitoring. The results obtained from
the comparative study show that the proposed technique
performs better on regression problems.

Active appearance models provide an elegant framework
for tracking objects. However, using them in a deterministic
algorithm to perform tracking is not robust enough since no
history is used of the object’s movement and position. In
their paper entitled On Visual Object Tracking Using Active
Appearance Models Hoffman, Herbst and Hunter present
two approaches to rectify this problem. Both techniques are
based on particle filters. Their experimental results indicate
the effectiveness of the proposed schemes.

In their paper, Identity Confidence Estimation of
Maneuvering Aircraft, Holtzhausen and Herbst apply
multiple hypothesis techniques to extract an identity
confidence from a track, given a set of possible tracks and
observations. Their system utilizes numerous estimation
filters internally which are investigated and compared. The
authors present results obtained from a radar simulation
system as well as from a series of benchmark tests.

Part I of the Special Issue on Pattern Recognition concludes
with a brief communication entitled 4 Note on Difference
Spectra for Fast Extraction of Global Image Information
in which the authors van Wyk, van Wyk and van den Bergh
demonstrate the use of the concept of an Image Difference
Spectrum as a fast alternative to pattern spectra derived from
computationally intensive granulometric techniques. This
means that granulometric analyses can now be performed
in real-time due to the low computational complexity of
the method.

MA van Wyk and BJ van Wyk
Guest Editors
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SUBDIVISION OF CURVES AND SURFACES: AN OVERVIEW

Ben Herbst, Karin M Hunter, Emile Rossouw

Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Abstract: Subdivision schemes are widely used in various applications such as data-fitting, com-
puter graphics and solid modeling. In this paper we present the basic ideas of subdivision schemes
for curves; both interpolatory and corner-cutting schemes, as well as their adaptation to finite se-

quences.
provide an example of surface subdivision.

We conclude with examples of specific applications for these subdivision schemes and

Key Words: subdivision, curve fitting, approximation theory

1. INTRODUCTION

Few people fail to be impressed by the quality of the
graphics of recent animated movies. Geri’s Game
by Pixar is a beautiful example. The keen observer
will note the names of Edwin Catmull and Jim Clark
among the credentials. Their contributions to anima-
tion, based on their subdivision scheme for surfaces,
won them an Academy Award for Technical Achieve-
ment in 2006.

To understand what subdivision is all about, one
should realise that the quality of the three-dimensional
graphics depend, among others, on the modeling of the
objects themselves. As in the case of Geri, one wants
to construct a face based on a limited number of con-
trol points that defines the basic structure. This im-
plies that given the control points, the region between
the control points should be constructed in a realis-
tic way. One can of course use interpolation, typically
spline interpolation in which case the interpolant is
first constructed and then evaluated at the required
points. Should one decide to move one of the control
points the process starts all over. Subdivision schemes
skip the first step of constructing the interpolant. In-
stead it proceeds directly from the control points to
the filled-out surface through an iterative procedure.
Moreover, the process is local with the advantage that
any change in control points have only a local effect.
Changing Geri’s nose by moving a control point does
not for example, affect his mouth. Apart from com-
puter animation, subdivision schemes also find wide
applications in computer graphics and solid modeling.

In this paper we explain the basic ideas behind subdi-
vision schemes on curves before we briefly indicate how
these ideas carry over to the subdivision of surfaces.

Suppose we are given a bi-infinite sequence of points
0 . . -

c® = {(:5) : j € Z}, and are interested in approx-

imating these points with a smooth curve. Standard

ways of doing this involves constructing an approxi-

mating function, e.g. an interpolating spline. Then,
in order to visually represent the approximating func-
tion in computer applications, the function needs to
be evaluated on a sufficiently dense set of points. Sub-
division schemes skip the first step by creating a dense
set of points directly from the given points, i.e. there
is no need to first construct the approximating func-
tion and then evaluate it. This leads to considerable
savings in computational cost.

Of course, if the original points contain noise, the ap-
proximating curve should not pass through them, i.e.
the approximating curve should not be interpolatory.
This can be achieved in different ways: It is possible to
first apply a smoothing operation to the given points
and then do an interpolation, or one can use something
like a smoothing spline. In this paper we describe two
techniques of subdivision, one interpolatory and one
smoothing (or corner-cutting).

Consider the following simple iterative procedure:
Start with a set of points ¢, called the original con-
trol points, and generate a new set of control points

) = {(‘L” j € Z} by taking a linear combination
of the ougmal control points. Repeat this until the
desired density is achieved.

For example if one generates the new control points
using the simple linear combination

(1) (0) (1) 1

0 ,
i =¢; andchH:,—( +c(;+)1) JjEZ, (1)

then the even-indexed elements of the new control
points are simply the original points and the odd-
indexed elements are generated halfway between the
old control points. This step is then repeated indefi-
nitely, roughly doubling the number of points at each
step. In this case the points fill in or converge to the
straight-line segments connecting the original control
points, as illustrated in Figure 1. Thus we obtain a
continuous piecewise linear curve. This simple proce-
dure is an example of a subdivision scheme.

j € Z}, called

In general, given a sequence a = {a; :
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(a) original control points {b) control points after one
iteration

Figure 1: Illustration of the iterative procedure
Equation 1.

the mask of the subdivision scheme, and a sequence
of control points ¢ = {¢; : j € Z}, we define the
corresponding subdivision operator S, by

(Sac); = Z a;_oiCr, j € L. (2)
keZ

The resulting subdivision scheme is then defined, for
a given sequence of control points ¢, by

D =¢ D =g p=0,1,..., (3)
or, equivalently,
0 = c, rtl) = S:;+l(:, r=0,1,.... (4)

Note that the nature of the subdivision scheme is en-
tirely determined by the choice of the mask, i.e. the
linear combination used to generate the new control
points at each iteration. The key therefore is to find an
appropriate mask. The choice of the mask determines
(i) whether the subdivision scheme is interpolatory or
smoothing (corner-cutting), (ii) the convergence of the
scheme, and (iii) the smoothness of the final curve.

These issues are closely related to the existence of a re-
finable funetion, as briefly discussed in the sections be-
low, and refinable functions provide a link to wavelets,
see e.g. [1].

There is no unique or best way of choosing a mask.
One possibility is to demand that if the original control
points fall on a polynomial of a certain degree, then the
newly generated control points must lie on the same
polynomial. This is, in fact, the idea behind Dubuc-
Deslauriers subdivision scheme [2, 3]. In Section 2,
we develop this idea to derive explicit formulae for the
Dubuc-Deslauriers mask and provide an adaptation for
finite control sequences.

In Section 3 we introduce corner-cutting subdivision
schemes and their corresponding refinable functions,
for infinite as well as finite sequences of control points.

A few applications of the subdivision of curves are
given in Section 4 and surface subdivision is briefly
discussed in Section 5.
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2. INTERPOLATORY SUBDIVISION

In this section we introduce the well known Dubuc-
Deslauriers subdivision scheme as an optimally local,
curve filling iterative procedure that reproduces poly-
nomials of a given odd degree. We then indicate how
the limit curve for the Dubuc-Deslauriers scheme de-
pends on the existence of an associated refinable func-
tion and provide an adaption of this scheme for finite
sequences.

2.1. Construction of the mask

Suppose the original control points fall on a polyno-
mial p of degree 2n — 1, i.e. (:50) = p(j), j € Z. Con-
sider the problem of finding the shortest possible mask
a such that all the subsequent iteratives ¢ fall on the
same polynomial. More specifically, we require that

S a-unt) =p(3). icz 5)

kel

The mask is derived from the standard Lagrange poly-
nomials of degree 2n — 1, uniquely defined by

(7)) = Ok,

and therefore satisfying the polynomial reproduction
property

k,j=-n+1,...,n, (6)

T

Y. pk)(z) =p(x), z€R, (7)

k=—n+1

An explicit formula for these Lagrange functions, for

k=-n+1,....n,is given by
n T — .
t@= ] =5 weRr (8)
k==n41 _J
ki

Comparing Equation 7 (with z = %) and Equation 5
(with j = 1), it follows readily that the shortest pos-
sible mask satisfyving Equation 5 is given by

azj = djo0, JEZ (9a)
a2j4+1 f_j (%) 3 j =-n...,n— 1, (gb)
azj+1 = 0, otherwise. (9c)

This mask is known as the Dubuc-Deslauriers mask [3].

Note that Equation 9a implies that Equation 3 satisfies
the interpolatory property

(r+1) _ (1)

Cs; 2 je€LZ, r=0,1,.., (10)

i.e. the Dubue-Deslauriers subdivision scheme is inter-
polatory. Also, the mask coefficients are symmetric,
i.e.

aj = a_j, JjEZL. (11)

Therefore the Dubuc-Deslauriers subdivision scheme
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is interpolatory, symmetric and fills polynomials of de-
gree 2n — 1.

For example, if n = 1, Equation 9, Equation 2 and
Equation 3 yield for » = 0, the iteration procedure of
Equation 1. This subdivision scheme converges to a
continuous piecewise linear function that interpolates
the original control points (see Figure 1).

For n = 2 we get

(-,  j=-2
% Jj=-1
azj41 =4 15 j=0, (12)
- J=1
0, otherwise.

Subdivision with this mask converges to a smooth
function [3], while still interpolating the original con-
trol points, see Figure 2.

{a) control points: original (b) original control points

(e}, after one iteration (o) (®), control polygon after 6

iterations ()

Figure 2: Dubuc-Deslauriers subdivision for n = 2

[t is interesting to note that Knuth based his construc-
tion of TEX fonts [4, Chapter 2] on ideas remarkably
similar to subdivision schemes more than 10 years be-
fore the Dubuc-Deslauriers scheme was introduced in
3]-

Figure 2 suggests that the Dubuc-Deslauriers subdivi-
sion converges to a smooth function for n = 2. For
a proof see [3, 5]. This limiting curve is described in
terms of a refinable function, to be discussed in the
next section.

2.2. Convergence of Dubuc-Deslauriers subdivision

The mask a of a convergent subdivision scheme ensures
the existence of a function ¢ satisfying

o(z) =D a;0(2z—j), zeR. (13)

JEL
We call such a function an refinable function.

[t is shown in [3, 5] that the Dubuc-Deslauriers mask
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a generates a convergent subdivision scheme, which
then guarantees the existence of an associated refinable
function ¢. Moreover, the refinable function inherits
the mask’s finite support and symmetry, as well as
its polynomial filling and interpolatory properties as
follows

o(x) =0, r & (—2n+1,2n — 1), (14)
p(z) = ¢(-x), z€R, (15)
S p(i)é(a - §) = pla), w€R, (16)
JEZ

¢'(J) = O‘_T'_-Uv J € Z, (17)

where p is any polynomial of degree < 2n — 1. Also,
the values of the refinable function at the half-integers
are the values of the mask

¢(L)=a;, je (18)

Finally, given the initial control points e, the limiting
curve f of the Dubuc-Deslauriers subdivision scheme
is given in terms of the refinable function as

f@) = cjo(z—j), z€R (19)
JEL

Some of these properties are illustrated in Figure 3
below.

W16

-11’12

(a) Full support [—3,3]

—_ 9

. s 0

2.0 237 24 26 2.8 3.

(b) Zoomed to [2,3]

Figure 3: Dubuc-Deslauriers refinable function ¢ and
mask a.

The convergence of a subdivision scheme S, ensures
the existence of an associated refinable function since
by choosing the original control points as the delta
sequence ¢ = 0 = {dp; : j € Z} in Equation 4 the limit
curve will be f(z) =3 ;5 dojé(x —j) = d(z), = € R.

The converse of this statement is also true for interpo-
latory subdivision schemes. But for non-interpolatory
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subdivision schemes there are refinable functions for
which the associated subdivision scheme is divergent,
as shown in [6].

2.3. A modified subdivision scheme for finite sequences

The algorithms for bi-infinite sequences, as described
in the previous sections, are applied mainly in the case
of periodic sequences. For finite sequences these algo-
rithms must be modified to accommodate the bound-
aries. Here we consider a method of adapting the
Dubuc-Deslauriers subdivision scheme of Section 2.1
to the situation where the initial sequence c is finite.

The construction of the mask for finite sequences fol-
lows along similar lines as for the infinite case. The
difficulty is that some of the values of the polynomial
p in Equation 7 lie outside the finite domain and need
to be supplied. This implies that an alternative mask
needs to be constructed in the vicinity of the bound-
ary. Following [7] and [8], we fit a polynomial of de-
gree 2n — 1 to the 2n points next to, and including the
boundary. Evaluating the resulting Lagrange polyno-
mials at the half-integers next to the boundary yields
the desired mask. The modified scheme for the left
hand boundary (j = 0,1,...) is given by

=,
20)
(r+1 . (
"323'+1) = Z@j,kcg)r
k>0

where for j =0,1,...,n — 2 (close to the boundary),

ajk =lh—ntr (j+35—n+1) (21)

for k¥ = 0,...,2n — 1, and ajp = 0 for k ¢
{0,1,...,2n — 1}. For j > (n — 1) (away from the
boundary)

l—j(3), k=-n+1+j,....n+]
ajkx =
0, otherwise.

If n = 2, for example Equation 21 gives

%-. k = 0_,

15 _

16 k - 1:
aor=li(3) =9 —15 k=2

1 .

16° k - '3:

0, otherwise,

.

and for 7 > 1 the mask is the same as before (see 12),

1 _ €

T E=0,3

Aj e = % k= 1: 2
0, otherwise.

In the presence of a right hand boundary, the mask
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has to be modified in the same way as the left hand
modifications, with the order reversed.

It is shown in [8] that a set of refinable functions ex-
ists for this modified mask (defined similarly to the
definition Equation 13). The boundary modifications
of the refinable function are illustrated in Figure 4.
The existence of a set of refinable functions for the

Figure 4: The refinable functions associated with the
boundary-modified mask with n = 2

boundary-modified subdivision scheme allows one to
construct wavelets for finite intervals. It is remark-
able that these wavelets have finite decomposition and
reconstruction sequences [8].

Next we discuss the so-called corner-cutting subdivi-
sion schemes.

3. CORNER-CUTTING SUBDIVISION

In the case where the original control points con-
tain noise we would not want to use an interpola-
tory subdivision scheme directly, but rather include
some smoothing in the approximation. Since the limit
curve of corner-cutting subdivision schemes does not
pass through the control points, which amounts to
some smoothing, corner-cutting subdivision schemes
are better suited to this approximation problem. In
this section we discuss one class of corner-cutting
subdivision schemes, namely the de Rham-Chaikin
scheme [9] and its generalization, the Lane-Riesenfeld
scheme [10].

The only difference between the corner-cutting and the
interpolatory schemes discussed in Section 2 lies in the
choice of the mask of the operator in Equation 2. Con-
ceptually, masks with positive entries generate corner-
cutting subdivision schemes, since new control points
are a weighted average of the old control points. The
de Rham-Chaikin mask is given by

1/ 3
L= — ), 7=0,...,3; 22
4 4(3)' J (22)

the corner-cutting property of this mask is illustrated
in Figure 5.
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(a) control points: original {b) original control points

(e), after one iteration (o) (e), control polygon after 6

iterations ()

Figure 5: Subdivision with the de Rham-Chaikin
mask Equation 22

Subdivision with the de Rham-Chaikin mask is conver-
gent [9, 11], so that we are guaranteed the existence
of a refinable function. This refinable function turns
out to be the B-spline of degree 2 (order 3), denoted
by B>. Accordingly, the limit curve of this subdivision
scheme is the quadratic spline

flz) = ZC;(EU)B?(I -j), zelR (23)

The generalization of this scheme is known as the
Lane-Riesenfeld scheme of order m. The Lane-
Riesenfeld scheme of order m has mask

(m) 1 m .
a _Qm—l(j ), j=0,...,m (24)

and its limit curve is the spline of degree m — 1 (see
[10]) defined by

f@) =" Bri(a - j) (25)
i

where B,,,_1 is the B-spline of degree m—1. Note that
the smoothness of the limiting curve increases with m.

Note also that the Lane-Riesenfeld mask has finite sup-
port, i.e.

(m) .
W™ =0, j¢[0.ml, (26)

and that the mask elements within the support are all
positive, i.e.

(m) .
a;"’ >0, je0,m] (27)

General results for finitely supported positive masks
can be found in [12, 1].

All that remains to be done in the Lane-Riesenfeld ex-
ample of corner-cutting subdivision is to modify the
scheme in the presence of boundaries. The problem is
the same as before—we need to supply missing values
at the boundary. A very simple procedure is to re-
peat the boundary values as many times as needed. It
turns out that this again leads to a a set of refinable
functions, this time splines with multiple knots at the
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boundary. 'I'hus the boundary-modihed scheme again
converges to a spline of the same degree as defined by
the interior mask.

An example of these modified refinable functions is
shown in Figure 6 and of the boundary-modified sub-
division

Figure 6: Boundary modified de Rham-Chaikin
refinable functions

in Figure 7. Note we have chosen the top left hand
control point as the first and last control points, hence
we get a sharp corner at this point.

{a) original control points (e) (b) control polygon after 6

and control polygon after 6 iterations
iterations ()

Figure 7: Boundary modified de Rham-Chaikin
subdivision

Next consider the control polygon of a shark shown in
Figure 8(a). Here we applied the standard de Rham-
Chaikin, iterated to convergence, and obtained the
sorry-looking shark of Figure 8(b)—a shark with blunt
teeth is no shark at all. Doubling the control points
defining the teeth results in the much happier-looking
shark of Figure 8(c).

4. EXAMPLES

In this section we apply interpolatory and corner-
cutting subdivision schemes to a few practical prob-
lems. The first example is a dynamic signature ob-
tained via a digitising tablet. Figure 9(a) shows the
original signature and the discretisation effects of this
particular tablet should be obvious.

Since the samples are connected by straight lines, Fig-
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=

{a) Original control polygon
(b) Normal de Rham-Chaikin subdivision

() de Rham-Chaikin subdivision with double points defining the

teeth

Figure 8: Keeping corners by doubling control points

ure 9(a) can also be viewed as an example of a Dubuc-
Deslauriers subdivision scheme with n = 1. Fig-
ure 9(b) shows the result of applying successive Dubuc-
Deslauriers with n = 2 and downsampling. It is clearly
smoother than Figure 9(a) but not as smooth as the de
Rham-Chaikin corner-cutting subdivision and down-
sampled curve shown in Figure 9(c).

The next example increases the resolution of an image
through subdivision. (Do not confuse this interpola-
tion procedure with super resolution techniques where
the resolution is increased by extracting additional in-
formation from multiple images.) Figure 10(a) shows
the original image with a subsampled version shown
in Figure 10(b).

We now apply subdivision to the subsampled version
in an effort to recover the original. Figure 10(c) and
(d) show the results of using the interpolatory Dubuc-
Deslauriers scheme with n = 2 and the corner-cutting
de Rham-Chaikin subdivision schemes, respectively. It
is left to the reader to decide which one of the two
schemes provide the more acceptable results.

5. SURFACE SUBDIVISION

In the preceding sections we have limited our discus-
sion to subdivision of curves. In this section we present
the Doo-Sabin subdivision scheme [13] as an example
of surface subdivision. Examples of other subdivision
schemes are described in Catmull and Clark [14], and
Loop [15]. For a good introduction see e.g. [16].

The Doo-Sabin scheme is based on uniform quadrilat-
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S

{a) original Signature

{b) interpolatory subdivision {c) corner-cutting subdivision

Figure 9: Smoothing a signature

(a) original image {b) subsampled image

(b) interpolatory subdivision (e) corner-cutting subdivision

Figure 10: Smoothing an image (detail)

eral faces. It is a vertex split method that is based on
biquadratic B-spline subdivision.

This scheme uses only one mask for all quadrilateral
faces, shown in Figure 11(a). This mask is fitted to
each face with the weights used cyclically to result in
four children vertices per quadrilateral face.

Since some faces in the mesh will not be quadrilat-
eral this mask will not always fit the faces. For the
extraordinary faces (non-quadrilateral faces) we use a
variable mask: for a face with n vertices we use the
mask in Figure 11(b) with
a__i{n—l—f;, - i=0,
"T4n | 3+2cos(Er), ie{l,...,n—1}.

T ’

Notice that the mask for the extraordinary faces re-



Vol.98(2) June 2007

Qp,

=3
=3

Lp_2

ap__ 5]

==
=[]

(a) mask for ordinary faces

faces

1

iy

{b) mask for extraordinary

Figure 11: Doo-Sabin Subdivision scheme masks

duces to the mask for an ordinary face when n = 4.

[n Figure 12, the first two iterations of this subdivision

scheme are shown when applied to a unit cube.

(b) Mesh after first iteration

(e} Mesh after second

iteration

Figure 12: Doo-Sabin subdivision of a cube

Once again the nature of the subdivision scheme and
the limiting surface depends entirely on the choice of
mask. For surface subdivision using triangular meshes,

see [15].
6. CONCLUSION

[n this paper a brief overview of subdivision schemes
for curves was given. The main ideas were explained
In particular, interpolatory and corner-
cutting schemes were discussed and the necessary
boundary modifications for finite sequences were de-
rived. The generalization to surfaces was briefly dis-
The numerical examples demonstrate the
power of these methods to generate smooth curves and

for curves.

sussed.

surfaces from a limited number of control points.
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UNSUPERVISED CLASSIFICATION OF DYNAMIC FROTHS.
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Abstract: Machine vision systems typically classify images of a flotation froth surface into one of a
distinct set of classes. This process typically involves having an experienced operator identify a set of
froth classes. After this, a machine vision system is trained to identify these froth classes. Identifying
these froth classes is particularly challenging for froths which have “dynamic” bubble size
distributions. Using unsupervised clustering algorithms, it is possible to automatically learn these
froth classes without user input. Validation of this technique is done by showing that the identified
froth classes have statistically different relationships between the froth velocity and concentrate
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grade.

Key words: machine vision, froth flotation, unsupervised classification, bubble size distribution.

1. INTRODUCTION
1.1 Flotation

Flotation is a separation process used in many mining
operations to upgrade the desired mineral concentration
before further downstream processing. The operation of
the flotation process is a complex one which is not
entirely understood. Each flotation cell has numerous
input parameters (reagent dosage, froth depth, air flow
rate) and is also affected by numerous disturbance
variables (ore type, mill performance). Typically, plant
operators inspect the state of the froth visually, taking
into account such parameters as velocity, bubble size,
texture, colour and stability. Based on the state of the
froth, the operator might make changes to one or more of
the input parameters in order to achieve optimal
performance.

As a result of this, numerous machine vision systems
have been developed to analyse the state of the froth in a
manner similar to that of an experienced plant operator.
The advantage of such an instrument is the availability of
precise, unbiased measurements 24 hours a day.

1.2 Froth Classification

Machine vision systems that monitor froth flotation cells
typically classify the state of the froth into a number of
discreet classes [1, 2, 3]. These froth classes are usually
dependent on the bubble size distribution (texture) of the
froth. The reason for using both bubble size and texture
measurements is that it is not always possible to
accurately segment individual bubbles in a froth. This
means that it is not always possible to determine an
accurate bubble size distribution (BSD) for a froth. Under
such circumstances, texture measures can be used which

allow for the discrimination of froths with different
bubble size distributions. However, the texture measures
do not provide the user with an accurate bubble size
distribution.

The froth classes are usually determined by studying the
fluctuations in a flotation cell over a long period of time
(typically a number of days). Visually dissimilar froth
classes are then identified by experienced operators. The
machine vision system is then trained to be able to
identify whether or not the cell being monitored is in one
of these predetermined froth classes. One of the
disadvantages of such a method is that there is no
guarantee that all possible froth classes will be identified
during the training process. This means that the system
will not be able to provide useful information when an
unknown froth class is identified.

1.3 “Dynamic” Bubble Size Distributions

When the bubble size distribution of the froth being
monitored does not change rapidly over a short period of
time, identification of froth classes by an experienced
operator is a relatively simple process. This is not always
the case; froths exist which have “dynamic™ bubble size
distributions. An example of such a froth is shown in
Figure 1, where two frames of video footage which have
been taken within one second of each other are shown.

This paper will be dealing with froths which have these
“dynamic” bubble size distributions. One of the biggest
difficulties with these froths is identifying different froth
classes. This is because two different froths will look
similar at times when viewed side by side. This dynamic
nature of the froth makes it very difficult to classify
froths into the appropriate classes. It is also a very time
consuming task, that is likely to have multiple operators
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classifying the same data set into different resultant
subsets. Having a solution to finding these froth classes
with minimal operator intervention is of utmost
importance as it results in the availability of consistent
results within a reasonable time frame.

Cumulative Bubble Size Distribution
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Figure 1: An example of a froth with a “dynamic” BSD.
The BSDs are taken from two frames of video which are
within 1 second of each other.

1.4 Objectives

The specific objectives of this paper are to show that
unsupervised classification algorithms can be used to
automatically detect a user specified number of froth
classes. It will also be shown that the froth classes
identified are not random groupings of froth classes, but
are in fact real froth classes that are statistically
significantly different in terms of the metallurgical
performance of the cell at the time of operation when the
froth class was observed.

2. UNSUPERVISED CLASSIFICATION OF
FROTHS

2.1 Froth Data Set

The data set used in this work consists of 105 video
segments. Each of these video segments is one minute in
duration (1500 frames) and was captured from the first
cell of the copper rougher circuit at Kennecott Utah
Copper Concentrator in January 2006. At the same time
that the video footage was captured, metallurgical
samples of the feed, concentrate and tailings of the cell
being monitored were taken. These samples were later
analysed to determine their elemental composition.

Some example images of the froth video segments
collected are shown in Figure 2. It is important to note
that the still images do not capture the dynamic nature of
the froths.

2.2 Bubble Size Distribution Measurements
The bubble size distribution for each of the frames of
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video from all 105 videos was calculated using the
improved watershed segmentation technique [4]. As has
been shown previously, further reduction of the data in
the bubble size distribution to a mean, median or p80
value is not appropriate for dynamic froths such as the
one being examined here [5].

Figure 2: Example images of the froth of the first rougher

cell at Kennecott. Note the different bubble sizes. Single

still images do not provide an accurate description of the
“dynamic” nature of the froth.

2.3 Frequently Occurring Bubble Size Distributions

The frequently occurring BSD algorithm is inspired by
the work of Varma and Zisserman [6], but instead of
finding image textons that occur frequently over an
image, frequently occurring BSDs are determined that are
found from the bubble size data.

A random sample of frames is taken from the entire data
set of froth videos, such that the sample is representative
of all the different bubble size distributions that can be
found in the data set. The cumulative bubble size
distributions are then calculated for each of the frames in
the sample. Once this has been done, an unsupervised
furthest-neighbour clustering algorithm is used to split
the sample into a user specified number of classes. This is
achieved by firstly creating a intra-distance matrix for the
entire set of cumulative BSD samples. The Kolmogorov-
Smirnov distance measure [7] is used to calculate the
distance between two cumulative BSDs. The Matlab
statistics toolbox is used to perform the unsupervised
furthest-neighbour clustering. The intra-distance matrix is
passed to the linkage function, the output of which is
passed to the cluster function. This generates the user
specified number of classes. For this work, eight clusters
are typically used. This value is chosen so that the
number of classes is small enough to ensure that there is
still a visual difference between the images from which
the identified BSDs are generated. The mean cumulative
bubble size distribution can then be calculated for each of
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Figure 3: Frequently occurring BSDs learnt from 500
samples.
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Figure 4: Frequently occurring BSDs learnt from
9000 samples.

Figure 5: Example images of the froths represented by the cumulative BSDs in Figure 4.
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Figure 6: The results of using unsupervised classification to determine three froth classes.
The labels of the histograms correspond to the labels of the BSDs in Figure 4.

segments. This resulting set of cumulative bubble size
distributions is known as the frequently occurring BSDs

[8].

To ensure that the random sample of frames taken from
the entire data set was representative, a test was

performed by looking at the resultant frequently
occurring BSDs that were found for different numbers of
samples. The results from these tests are shown in
Figures 3 and 4. These figures show the resulting
frequently occurring BSDs when the number of samples
drawn are 500 and 9000 respectively. From these figures
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Figures 3 and 4. These figures show the resulting
frequently occurring BSDs when the number of samples
drawn are 500 and 9000 respectively. From these figures
it is evident that a vast increase in the size of sample used
in the unsupervised clustering does not have a significant
impact on the resultant frequently occurring BSDs. The
only difference is that the smoothness of the BSDs is
increased when larger sample sizes are used. The
difference in labelling of the frequently occurring BSDs
is a result of the order in which the outputs from the
clustering algorithm are generated, so the differences in
labelling can be ignored.

Figure 5 shows example images of froths corresponding
to the frequently occurring BSDs shown in Figure 4.

2.4 Characterisation of Dynamic Froths

Using the frequently occurring cumulative bubble size
distributions, it is possible to characterise each video
segment as a histogram. The histogram has the same
number of bins as the number of frequently occurring
BSDs that were identified in Section 2.3. The histogram
shows the percentage of time that the froth has a bubble
size distribution similar to the frequently occurring
bubble size distributions.

The chi-squared distance measure [9] can be used to
provide a measure of dissimilarity between the
characteristic histograms of different froths. It is possible
to create a dissimilarity matrix for the entire data set of
characteristic histograms of froth video segments. This
can be used in an unsupervised clustering algorithm
(furthest-neighbour) to classify the data set into classes
with similar characteristic histograms. Once again, the
Matlab statistical toolbox functions: linkage and cluster
are used to do the clustering.

The results from using these unsupervised clustering
algorithms are shown in Figure 6. Note that the labels of
the bars in Figure 6 corresponds to the bubble size
distributions with the same labels in Figures 4 and 5. The
characteristic histograms are clustered into three froth
classes. This number is chosen for two reasons: firstly,
experience tells us that flotation cells typically have
between three to five different froth classes under normal
operating conditions and secondly, to maximise the
amount of concentrate data per froth class, which is
important to ensure that statistically meaningful results
are obtained.

3. VALIDATION

Froth velocity is an important performance indicator
which is typically used for mass pull and concentrate
grade prediction. In this section, the link between froth
velocity and concentrate grade is used to validate the
froth classes identified by the clustering algorithm
described in Section 2.
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3.1 Metallurgical Responses of Froth Classes

For each of the identified froth classes, the relationship
between the froth velocity and metallurgical content of
the concentrate can be modelled by linear regression.
Different froth classes will have different trends, and so it
is possible to use this information to determine if the
froth classes identified are correct or just random
collections of froths.

If the froth classes identified by the unsupervised
classification algorithm are no more than a random
selection of froths, then the relationships between the
froth velocity and concentrate metallurgy for each of the
froth classes will not be statistically significantly different
from each other.

An example of such a set of regression lines is shown in
Figure 7 which corresponds to a set of three froth classes
which have been generated by randomly selecting their
membership. The values in Table I show the results from
an analysis to determine whether or not the regression
lines from each of the randomly created froth classes are
statistically different. The values are all less than ninety-
five percent. This indicates that one cannot say with
confidence that the lines are statistically different, and
must therefore accept the null hypothesis which is that
there is no difference between these froth classes. This is
exactly what is to be expected from randomly allocated
froth classes.

3.2 Statistical Calculations

This section gives a brief overview of the statistical tests
used for the comparison of regression lines from different
froth classes. For more detail, the reader is referred to
[9.10]. The following series of F-Tests are performed in
order to determine whether or not the regression lines are
statistically different:
1. F-Test for the comparison of data sets’ variance
2. F-Test for the comparison of the slopes of the
regression lines
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Figure 7: Linear trends relating froth velocity to
concentrate grade for three randomly allocated froth
classes.
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Figure 8: The results of using unsupervised classification to determine nine froth classes. The labels of the
histograms correspond to the labels of the BSDs in Figure 4.

Table I: Summary of comparative statistics for three randomly allocated froth classes.

Confidence of

Confidence of

Confidence of

Confidence of

Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 84.08 10.37 55.23 84.08
Copper [Cu] 1 3 53.04 34.01 66.95 66.95
2 3 56.61 29.64 64.78 66.78
Table II: Summary of comparative statistics for three froth classes.
Confidence of | Confidence of | Confidence of | Confidence of
Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 7.89 99.91 99.95 99.95
Copper [Cu] 1 3 5.11 99.99 100.00 100.00
2 3 61.40 99.91 99.96 99.96

Table III: Summary of comparative statistics three froth classes generated using the alternative approach.

Confidence of

Confidence of

Confidence of

Confidence of

Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 63.07 99.99 100.00 100.00
Copper [Cu] 1 3 95.30 100.00 100.00 100.00
2 3 94.58 100.00 100.00 100.00
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Figure 9: Linear trends relating froth velocity to
concentrate grade for three froth classes.

3. F-Test for the comparison of the intercepts of the
regression lines

4. F-Test for the comparison of the mean of the
regression lines.

3.3 Verification of Unsupervised Clustering

Figure 9 shows the resulting trends from using the fitting
of a linear regression model relating froth velocity to
normalised concentrate grade for each of the three froth
classes determined by the unsupervised clustering
algorithm (the copper concentrate grade has been
normalised for confidentiality reasons. The normalisation
process does not however affect the trends observed.) It is
clear from the figure that the trends have different mean
values, unlike the random allocation of froths in Figure 7.

Statistical analysis of the differences between these
regression lines is show in Table II. All three of the
regression lines are different from each other with at least
99.95% confidence.

These results show that the techniques used here to
automatically determine the froth classes present in a set
of videos of dynamic froths give meaningful results and
not just a random selection of froth classes.

4. AN ALTERNATIVE APPROACH
4.1 User Intervention

An alternative approach to the previously mentioned
classification method is now discussed. Unlike the
previous technique, which only relies on the user’s input
for the number of froth classes to be determined, this
method makes use of user intervention in deciding how to
merge a larger set of froth classes into a smaller, more
manageable set of froth classes.

Once again, the unsupervised froth classification
techniques described earlier were used to determine nine
froth classes. These nine froth classes are shown in
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Figure 10: Linear trends relating froth velocity to
concentrate grade for three froth classes using the
alternative approach.

Figure 8. The metallurgical (froth velocity vs. concentrate
grade) responses of these classes were analysed, and
froths which froths were grouped together. It is necessary
to do this, as having nine froth classes results in the
metallurgical data effectively being divided by nine, thus
reducing the statistical confidence that can be put on the
observed trends. The result of this grouping of froth
classes resulted in the middle column of froth classes in
Figure 8 being chosen as the final froth classes.

The final metallurgical responses of these froth classes is
shown in Figure 10. It is clear that different linear
regression models exist for the separate froth classes.
This is confirmed in Table III which shows the results for
testing the statistical significance of the regression lines
being the same. All of the trends relating froth velocity to
concentrate grade for these froth classes have a 99.9%
confidence that they are statistically different. It is also
interesting to note that for this set of froth classes, the
trends have an almost 95% confidence that the slopes are
statistically different. This information is particularly
useful from an operational point of view, as it provides
the operator with additional information which can be
used for the improvement of operation of the cell being
monitored.

5. CONCLUSION

It has been shown that unsupervised clustering techniques
can be used to separate a set of dynamic froths into
visually similar froth classes. The results from the
clustering have been validated by showing that each of
the froth classes identified have statistically different
regression lines relating froth velocity to concentrate
grade. This would not be the case if the froth video
segments were divided into random classes.

An alternative approach which relies more on user
intervention results in very similar froth classes being
identified. This is a further indication that the technique is
giving appropriate clusterings of data. The alternative
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approach also provides additional information for the
operators as the trends modelled have statistically
different slopes relating froth velocity to concentrate
grade.

The major advantages of having a system which is able to
make use of unsupervised clustering are the consistency
of the results, the speed at which they can be obtained
and the fact that this method will enable new froth classes
to be identified in an online setting. This is unlike
manually identifying froth classes which is a difficult,
time consuming and operator dependent process, which
invariably results in a poor set of froth classes to work
with.
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Abstract: An ensemble based approach for dealing with missing data, without predicting or imputing
the missing values is proposed. This technique is suitable for online operations of neural networks and
as a result, is used for online condition monitoring. The proposed technique is tested in both
classification and regression problems. An ensemble of Fuzzy-ARTMAPs is used for classification
whereas an ensemble of multi-layer perceptrons is used for the regression problem. Results obtained
using this ensemble-based technique are compared to those obtained using a combination of auto-
associative neural networks and genetic algorithms and findings show that this method can perform
up to 9% better in regression problems. Another advantage of the proposed technique is that it
eliminates the need for finding the best estimate of the data, and hence, saves time.

Key words: Autoencoder neural networks, Fuzzy-ARTMAP, Genetic algorithms, Missing data,
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Multi-layer Perceptron MLP

1. INTRODUCTION

Real time processing applications that are highly
dependent on the newly arriving data often suffer from
the problem of missing data. In cases where decisions
have to be made using computational intelligence
techniques, missing data become a hindering factor. The
biggest challenge on one hand is that most computational
intelligence techniques such as neural networks are not
able to process input data with missing values and hence,
cannot perform classification or regression when some
input data are missing. Various heuristics for missing data
have however been proposed in the literature [1]. The
simplest method is known as ‘listwise deletion’ and this
method simply deletes instances with missing values [1].
The major disadvantage of this method is the dramatic
loss of information in data sets. There is also a well
documented evidence showing that ignorance and
deletion of cases with missing entries is not an effective
strategy [1-2]. Other common techniques are imputation
methods based on statistical procedures such as mean
computation, imputing the most dominant variable in the
database, hot deck imputation and many more. Some of
the best imputation techniques include the Expectation
Maximization (EM) algorithm [3] as well as neural
networks coupled with optimisation algorithms such as
genetic algorithms as used in [4] and [5]. Imputation
techniques where missing data are replaced by estimates
are increasingly becoming popular. A great deal of
research has been done to find more accurate ways of
approximating these estimates. Among others, Abdella
and Marwala [4] used neural networks together with
Genetic Algorithms (GA) to approximate missing data.
Gabrys [6] has also used Neuro-fuzzy techniques in the
presence of missing data for pattern recognition
problems.

The other challenge in this work is that, online condition
monitoring uses time series data and there is often a
limited time between the readings depending on how
frequently the sensor is sampled. In classification and
regression tasks, all decisions concerning how to proceed
must be taken during this finite time period. Methods
using optimisation techniques may take longer periods to
converge to a reliable estimate and this depends entirely
on the complexity of the objective function being
optimised. This calls for better techniques to deal with
this missing data problem.

We argue in this paper that it is not always necessary to
have the actual missing data predicted. Differently said, it
is not in all cases that the decision is dependent on all
actual values. Therefore, a vast amount of computational
resources is wasted in attempts to predict the missing
values, whereas the ultimate result could have been
achieved without such values. In light of this challenge,
this paper investigates a problem of condition monitoring
where computational intelligence techniques are used to
classify and regress in the presence of missing data
without the actual prediction of missing values. A novel
approach where no attempt is made to recover the
missing values, for both regression and classification
problems, is presented. An ensemble of fuzzy-ARTMAP
classifiers to classify in the presence of missing data is
proposed. The algorithm is further extended to a
regression application where Multi-layer Perceptron
(MLP) is used in an attempt to get the correct output with
limited input variables. The proposed method is
compared to a technique that combines neural networks
with Genetic Algorithm (GA) to approximate the missing
data.
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2. MISSING DATA THEORY

According to Little and Rubin [1], missing data are
categorized into three basic types namely: ‘Missing at
Random’, (MAR), ‘Missing Completely at Random’,
(MCAR) and ‘Missing Not at Random’, (MNAR). MAR
is also known as the ignorable case [3]. The probability of
datum d from a sensor § to be missing at random is
dependent on other measured variables from other
sensors. A simple example of MAR is when sensor T is
only read if sensor S reading is above a certain threshold.
In this case, if the value read from sensor S is below the
threshold, there will be no need to read sensor T and
hence, readings from 7 will be declared missing at
random. MCAR on the other hand refers to a condition
where the probability of § values missing is independent
of any observed data. In this regard, the missing value is
neither dependent on the previous state of the sensor nor
any reading from any other sensor. Lastly, MNAR occurs
when data is neither MAR nor MCAR and is also referred
to as the non-ignorable case [l, 3] as the missing
observation is dependent on the outcome of interest. A
detailed description of missing data theory can be found
in [3]. In this paper, we shall assume that data is MAR.

3. BACKGROUND
3.1 Neural network: multi-layer perceptrons

Neural networks may be viewed as systems that learn the
complex input-output relationship from any given data.
The training process of neural networks involves
presenting the network with inputs and corresponding
outputs and this process is termed supervised learning.
There are various types of neural networks but we shall
only discuss the MLP since they are used in this study.
MLPs are feed-forward neural networks with an
architecture comprising of the input layer, hidden layer
and the output layer. Each layer is formed from smaller
units known as neurons. Neurons receive the input signals
x and propagate them forward to the network and maps
the complex relationship between inputs and the output.
The first step in approximating the weight parameters of
the model is finding the approximate architecture of the
MLP, where the architecture is characterized by the
number of hidden units, the type of activation function, as
well as the number of input and output variables. The
second step estimates the weight parameters using the

training set [7]. Training estimates the weight vector W
that ensures that the output is as close to the target vector
as possible. This paper implements the autoencoder
neural network as discussed below.

Autoencoder neural networks: Autoencoders, also known as
auto-associative neural networks, are neural networks
trained to recall the input space. Thompson et al [8]
distinguish two primary features of an autoencoder
network, namely the auto-associative nature of the
network and the presence of a bottleneck that occurs in
the hidden layers of the network, resulting into a
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butterfly-like structure. In cases where it is necessary to
recall the input, autoencoders are preferred due to their
remarkable ability to learn certain linear and non-linear
interrelationships such as correlation and covariance
inherent in the input space. Autoencoders project the
input onto some smaller set by intensively squashing it
into smaller details. The optimal number of the hidden
nodes of the autoencoder, though dependent on the type
of application, must be smaller than that of the input
layer [8]. Autoencoders have been used in various
applications including the treatment of missing data
problem by a number of researchers including [4] and [9].

In this paper, auto-encoders are constructed using the
MLP networks and trained using back-propagation. The
structure of an autoencoder constructed using an MLP
network is shown in Figure 1. The first step in
approximating the weight parameters of the model is
finding the approximate architecture of the MLP, where
the architecture is characterized by the number of hidden
units, the type of activation function, as well as the
number of input and output variables. The second step
estimates the weight parameters using the training set [7].

Training estimates the weight vector W to ensure that the
output is as close to the target vector as possible. The
problem of identifying the weights in the hidden layers is
solved by maximizing the probability of the weight
parameter using Bayes’ rule [8] as follows:

- P(DIW)P(W)
WID)y=—"""22"7
p( ) PD) (1)

Where:

D is the training data, P(W |D) is the posterior
probability, P(DIW) is called the likelihood term that
balances between fitting the data well and helps in

avoiding overly complex models whereas P(WJ is the

prior probability of W and P(D) is the evidence term
that normalizes the posterior probability. The input is
transformed from x to the middle layer, a, using weights
w;; and biases b; as follows [8]:

Bottleneck

X2 —» — X7
X3 —p — X3
X4 —p — Xy
Input Hidden Output
Layer Layer Layer

Figure 1: The structure of a four-input four-output
autoencoder
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d —
aj =ZWJ,-£X£ +bJ. 2)
i=1

where j = 1 and j = 2 represent the first and second layer
respectively. The input is further transformed using the
activation function such as the hyperbolic tangent (tanh)
or the sigmoid in the hidden layer. More information on
neural networks can be found in [10].

3.2 Genetic Algorithms

Genetic algorithms use the concept of survival of the
fittest over consecutive generations to solve optimisation
problems [11]. As in biological evolution, the fitness of
each population member in a generation is evaluated to
determine whether it will be used in the breeding of the
next generation. In creating the next generation, the use
of techniques (such as inheritance, mutation, natural
selection, and recombination) common in the field of
evolutionary biology are employed. The GA algorithm
implemented in this paper uses a population of string
chromosomes, which represent a point in the search
space [11]. In this paper, all GA parameters were
empirically determined. GA is implemented by following
three main procedures which are selection, crossover and
mutation. The algorithm listing in Figure 2 illustrates how
GA operates.

Fuzzy ARTMAP is a neural network architecture
developed by Carpernter er al [12] and is based on
Adaptive Resonance Theory (ART). The Fuzzy
ARTMAP has been used in condition monitoring by
Javadpour and Knapp [13], but their application was not
online. The Fuzzy ARTMAP architecture is capable of
fast, online, supervised incremental learning,
classification and prediction [12]. The fuzzy ARTMAP

GA Algorithm

1). Create an initial population P, beginning at an initial
generation g = ().

2). for each population P, evaluate each population
member (chromosome) using the defined fitness
evaluation function possessing the knowledge of the
competition environment.

3). wusing genetic operators

and

inheritance,
P(g) 1o

produce P(g +1) from the fit chromosomes in P
(8)

4). repeat steps (2) and (3) for the number of
generations G required.

such as

mutation crossover,  alter

Figure 2: Schematic representation of the Genetic
algorithm operation
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operates by dividing the input space into a number of
hyperboxes, which are mapped to an output space.
Instance based learning is used, where each individual
input is mapped to a class label. Three parameters namely

the vigilance 0O € [0, 1], the learning rate ﬁE [0, 1] and
the choice parameter ¢, are used to control the learning

process. The choice parameter is generally made small
and a value of 0.01 was used in this application. The

parameter ﬂ controls the adaptation speed, where 0
implies a slow speed and 1, the fastest. If = 1, the
hyperboxes get enlarged to include the point represented
by the input vector. The vigilance represents the degree
of belonging and it controls how large any hyperbox can
become, resulting in new hyperboxes being formed.
Larger values of © lead to a case where smaller

hyperboxes are formed and this eventually leads to
‘category proliferation’, which can be viewed as
overtraining. A complete description of the Fuzzy
ARTMAP is provided in [12]. In this work, Fuzzy
ARTMAP is preferred due to its incremental learning
ability. As new data is sampled, there will be no need to
retrain the network as would be the case with the MLP.

4. NEURAL NETWORKS AND GENETIC
ALGORITHM FOR MISSING DATA

The method used here combines the use of auto-
associative neural networks with genetic algorithms to
approximate missing data. This method has been used by
Abdella and Marwala [4] to approximate missing data in
a database. A genetic algorithm is used in this work to
estimate the missing values by optimising an objective
function as presented shortly in this section. The
complete vector combining the estimated and the
observed values is input into the autoencoder as shown in
Figure 3. Symbols X, and X, represent the known
variables and the unknown (or missing) variables
respectively. The combination of X, and X, represent the
full input space.

Considering that the method proposed here uses an
autoencoder, one will expect the input to be very similar
to the output for a well chosen architecture of the
autoencoder. This is, however, only expected on a data

with A

Y

Database ;
+

Missing
Values

X,

Database

L
S

Genetic
Algorithm
Estimation

? No

Figure 3: Autoencoder and GA Based missing data
estimator structure

Auto-associative network
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set similar to the problem space from which the inter-
correlations have been captured. The difference between
the target and the actual output is used as the error and
this error is defined as follows:

e=X—-f(W,%) 3)

where X and Ware input and weight vectors
respectively. To make sure the error function is always
positive, the square of the equation is used. This leads to
the following equation:

£=(X-f(W,%)) @)

Since the input vector consist of both the known, X, and
unknown, X, entries, the error function can be written as

follows:
(b)) e

and this equation is used as the objective function that is
minimised using GA.

5.  PROPOSED METHOD: ENSEMBLE BASED
TECHNIQUE FOR MISSING DATA

The algorithm proposed here uses an ensemble of neural
networks to perform both classification and regression in
the presence of missing data. Ensemble based approaches
have well been researched and have been found to
improve  classification performances in  various
applications [14-15]. The potential of using an ensemble
based approach for solving the missing data problem
remains unexplored in both classification and regression
problems. In the proposed method, batch training is
performed whereas testing is done online. Training is
achieved using a number of neural networks, each trained
with a different combination of features. For a condition
monitoring system that contains n sensors, the user has to
state the value of n,,; which is the number of features
most likely to be available at any given time. Such
information can be deduced from the reliability of the
sensors as specified by manufacturers. Sensor
manufacturers often state specifications such as Mean-
time-between failures (MTBF) and Mean-time-to-failure
(MTTF) which can help in detecting which sensors are
more likely to fail than others. MTTF is used in cases
where a sensor is replaced after a failure, whereas MTBF
denotes time between failures where the sensor is
repaired. There is nevertheless, no guarantee that failures
will follow manufacturers” specifications.

When the number of sensors most likely to be available
has been determined, the number of all possible networks
can be calculated using:
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n n!
N = = —[ (6)
nm'ﬂﬁ n(n - nm-‘m\r )'

where N is the total number of all possible networks, n is
the total number of features and n,,,; is the number of
features most likely to be available at any time. Although
the number n,,,; can be statistically calculated, it has an
effect on the number of networks that can be available.
Let us consider a simple example where the input space
has 5 feature, labelled: a, b, ¢, d and e and there are 3
features that are most likely to be available at any time.
Using equation (6), variable N is found to be 10. These
classifiers will be trained with features [abc, abd, abe,
acd, ace, ade, bed, bee, bde, cde]. In a case where one
variable is missing, say, a, only four networks can be
used for testing, and these are the classifiers that do not
use a in their training input sequence. If we get a situation
where two variables are missing, say a and b, we are left
with one classifier. As a result, the number of classifiers
reduces with an increase in the number of missing inputs
per instance.

Each neural network is trained with n,,,; features. The
validation process is then conducted and the outcome is
used to decide on the combination scheme. The training
process requires complete data to be available as training
is done off-line. The available data set is divided into the
‘training set’ and the ‘validation set’. Each network
created is tested on the validation set and is assigned a
weight according to its performance on the validation set.
A diagrammatic illustration of the proposed ensemble
approach is presented in Figure 4.

For a classification task, the weight is assigned using the

weighted majority scheme given by [16] as:

a=—o— (7)

Networks

Modular
outputs

Combination scheme
l) Final output

Figure 4: Diagrammatic illustration of the proposed
ensemble based approach for missing data
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where FE. is the estimate of model i’s error on the

validation set. This kind of weight assignment has its
roots in what is called boosting and is based on the fact
that a set of networks that produces varying results can be
combined to produce better results than each individual
network in the ensemble [16]. The training algorithm is
presented in Algorithm I and the parameter ntwk;
represents the i neural network in the ensemble.

The testing procedure is different for classification and
regression. In classification, testing begins by selecting an
elite classifier. This is chosen to be the classifier with the
best classification rate on the validation set. To this elite
classifier, two more classifiers are gradually added,
ensuring that an odd number is maintained. Weighted
majority voting is used at each instance until the
performance does not improve or until all classifiers are
utilised. In a case of regression, all networks are used all
at once and their predictions, together with their weights
are used to compute the final value. The final predicted
value is computed as follows:

f(x)=yEZa,-ﬂ(x) ®)

where & is the weight assigned during the validation
stage when no data were missing and N is the total
number of regressors. The parameter ¢ is assigned such

N
thalzafi =1. Considering that not all networks shall
i=1

be available during testing, we define N, as the
number of regressors that are usable in obtaining the
Nn.w:r.rsh'

Yo =l
=1

We try to solve this by recalculating the weights such that
the sum of all weights corresponding to N, is 1.

regression value of an instance j. As a result

6. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results obtained in the
experiments conducted using the two techniques
presented above. Firstly, the results of the proposed
technique in a classification problem will be presented
and later the method will be tested in a regression
problem. In both cases, the results are compared to those
obtained after imputing the missing values using the
neural network-genetic algorithm combination as
discussed above.

6.1 Application to classification

Data set: The experiment was performed using the
Dissolved Gas Analysis (DGA) data obtained from a
transformer bushing operating on-site. The data consist of
10 features, which are the gases that dissolved in the oil.
The hypothesis in this experiment is to determine if the
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Algorithm 1: Proposed algorithm for classification tasks

input : all variable € InputSpace & 14444 Obtamned
from the user

output: class

Calculate number of maximum Networks N using Eq

(6)

forall (variables 1 — Xn)do

Create all possible networks, ntwk, — ntwke,

each with 12, .4 nputs

end

while Training do

« Tran nntwk; with a different combination of 4,

mputs

forall i — C do
«— Subject ntwki to a validation set as follows:
— Select the corresponding features used;
— Obtain network performance:
—— Assign weights, a according to Eq (7) and
store for future use

end

end

while Testing do

« Load parameters from trainning;

if 4 Classification problem then

foreach instance with missing values do
« Select networks, starting with those with
bigger a:
+ Bnng 2 more networks, using their aas
the selection critenia;
« Use majornty voting to obtain the final

classification
end

end

if 4 Regression Problem then

foreach instance with missing values do
« Get regression estimates from all
networks trained without the current
missing vaniable
« Use their weights to compute the final

value.
end

end

end

Figure 5: Proposed algorithm for classification tasks

bushing condition (faulty or healthy) can be determined
while some of the data are missing. The data was divided
into the training set and the validation, each containing
2000 instances.

Experimental  setup: The classification test was
implemented using an ensemble of Fuzzy-ARTMAP
networks. Two inputs were considered more likely to be
missing and as a result, 8 were considered most likely to
be available. The online process was simulated where
data is sampled one instance at a time for testing. The
network parameters were empirical determined and the
vigilance parameter of 0.75 was used for the Fuzzy-
ARTMAP. The results obtained were compared to those
obtained using the the NN-GA approach, where for the
GA, the crossover rate of 0.1 was used over 25
generations, each with a population size of 20. All these
parameters were empirically determined.
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Perormance VS number of classifiers
100 T T T T T T T

Performance in %

85 L L | L L L L
1 3 5 7 9

Number of classifiers

Figure 6: Diagrammatic illustration of the proposed
ensemble based approach for missing data

Results: Using Equation (6), a total of 45 networks was
found to be the maximum possible. The performance was
calculated only after 4000 cases have been evaluated and
is shown in Figure 6. The classification increases with an
increase in the number of classifiers used. Although all
these classifiers were not trained with all the inputs, their
combination seems to work better than one network. The
classification accuracy obtained under missing data goes
as high as 98.2% which compares very closely to a 100 %
which is obtainable when no data is missing.

Using the NN-GA approach, a classification of 96% was
obtained. Results are tabulated in Table I below.

Table I: Comparison between the proposed method and
the NN-GA approach

Proposed NN-GA
Algorithm
Number of missing | 1 2 1 2
Accuracy (%) 98.2 |1 97.2 | 99 89.1
Run time (s) 0.86 | 0.77 | 0.67 | 1.33

The results presented in Table I clearly show that the
proposed algorithms can be used as a means of solving
the missing data problem. The proposed algorithm
compares very well to the well know NN-GA approach.
The run time for testing the performance of the method
varies considerably. It can be noted from the table that for
the NN-GA method, run time increase with increasing
number of missing variables per instance. Contrary to the
NN-GA, our proposed method offers run times that
decrease with increasing number of inputs. The reason for
this is that the number of Fuzzy-ARTMAP networks
available reduces with an increasing number of inputs as
mentioned earlier. However, this improvement in speed
comes at a cost of the diversity. We tend to have less
diversity as the number of training inputs increase.
Furthermore, this method will completely come to a
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failure in a case where more than n,, inputs will be
missing at the same time.

6.2 Application to regression

In this section, we extend the algorithm implemented in
the above section to a regression problem. Instead of
using an ensemble of Fuzzy ARTMAP networks as in
classification, MLP networks are used. The reasons for
this practice are two fold; firstly because MPL’s are
excellent regressors and secondly, to show that the
proposed algorithm can be used with any architecture of
neural networks.

Database: The data from a model of a Steam Generator
at Abbott Power Plant [17] was used for this task. This
data has four inputs, which are the fuel, air, reference
level and the disturbance which is defined by the load
level. There are two outputs which we shall try to predict
using the proposed approach in the presence of missing
data. These outputs are drum pressure and the steam flow.

Experimental setup: Although Fuzzy-ARTMAP could
not be used for regression, we extended the same
approach proposed above using MLP neural networks for
regression problem. As before, this work regresses in
order to obtain two outputs which are the drum pressure
and the steam flow. We assume n,,; = 2 is the case and as
a result, only two inputs can be used. We create an
ensemble of MLP networks, each with five hidden nodes
and trained only using two of the inputs to obtain the
output. Due to limited features in the data set, this work
shall only consider a maximum of one sensor failure per
instance. Each network was trained with 1200 training
cycles using the scaled conjugate gradient algorithm and
a hyperbolic tangent activation function. All these
training parameters were again empirically determined.

Table II: Regression accuracy obtained without
estimating the missing values.

Proposed NN-GA
Algorithm
Number of missing | 1 2 1 2
Perf (%) | Time | Perf (%) | Time
Drum Pressure 98.2 97.2 | 68 126
Steam Flow 86 077 | 84 98

Results: Since testing is done online where one input
arrives at a time, evaluation of performance at each
instance would not give a general view of how the
algorithm works. The work therefore evaluates the
general performance using the following formula only
after N instances have been predicted.

Error = &x 100% (9
N
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where 71, is the number of predictions within a certain

tolerance. In this paper, a tolerance of 20% is used and
was arbitrarily chosen. Results are summarised in Table
II.

‘Perf” indicates the accuracy in percentage whereas time
indicates the running time in seconds. Results show that
the proposed method is well suited for the problem under
investigation. The proposed method performs better than
the combination of GA and autoencoder neural networks
in the regression problem under investigation. The reason
is that the errors that are made when inputting the missing
data in the NN-GA approach are further propagated to the
output-prediction stage. The ensemble based approach
proposed here does not suffer from this problem as there
is no attempt to approximate the missing variables. It can
also be observed that the ensemble based approach takes
less time that the NN-GA method. The reason for this is
that GA may take longer times to converge to reliable
estimates of the missing values depending on the
objective function to be optimised. Although, the
prediction times are negligibly small, an ensemble based
technique takes more time to train since training involves
a lot of networks.

7. CONCLUSION

In this paper a new techniques for dealing with missing
data for online condition monitoring problem was
presented and studied. Firstly the problem of classifying
in the presence of missing data was addressed, where no
attempts are made to recover the missing values. The
problem domain was then extended to regression. The
proposed technique performs better than the NN-GA
approach, both in accuracy and time efficiency during
testing. The advantage of the proposed technique is that it
eliminates the need for finding the best estimate of the
data, and hence, saves time. Future work will explore the
incremental learning ability of the Fuzzy ARTMAP

in the proposed algorithm.
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Abstract: Active appearance models provide an elegant framework for tracking objects. Using
them in a deterministic algorithm to perform tracking is not robust enough since no history is used

of the object’s movement and position.

‘e discuss two approaches to rectify this situation. Both

techniques are based on the particle filter. The first technique initialises the active appearance model
search algorithm with a shape estimate obtained from an active contour tracker. A combination of
a particle filter and an active appearance model forms the foundation for the second technique.
Experimental results indicate the effectiveness of these techniques.

Key Words: active appearance models, particle filter, tracking

1. INTRODUCTION

Active appearance models (AAMs) [1] provide a neat
model-based framework for tracking objects. They in-
corporate both shape and texture into their formula-
tion, hence they enable us to track simultaneously the
outline of an object as well as its appearance. It is
therefore easy to use the parameters provided by an
AAM tracker in other applications.

Stegmann [2] demonstrated that AAMs can be suc-
cessfully applied to perform object tracking. In his
deterministic approach, the AAM search algorithm is
applied successively to each frame. However, this tech-
nique is not robust since the optimisation techniques
employed in the AAM search algorithm only explores
a small, local region of interest. No history of the ob-
ject’s movement and position is used to improve the
optimisation. Therefore the tracker fails when the ob-
ject moves fast for example. The reason for this failure
is that the sudden jumps caused by fast movements
lead to a bad initialisation for the AAM optimisation
routines.

In this paper, two techniques are discussed which can
be used to make the deterministic AAM tracker more
robust. The first technique is based on active con-
tours. It initialises the AAM using the shape estimate
obtained from active contours. In this way, the AAM
search algorithm is narrowed down to a local region
of interests around the estimate from active contours.
Since the active contours algorithm is able to track
an object robustly, it is a better initialisation for the
AAM. The second technique uses a combination of a
particle filter and an AAM to provide more robustness.
Here temporal filtering predicts the parameters of the
AAM so that the history of the object’s movement and
position enhances the AAM searches.

Central to both techniques is a particle filter. Parti-

cle filters have become an important tool to track ob-
jects. They have been used in conjunction with edge
measurements (active contours) [3], colour histograms
[4, 5] and even a combination of the aforementioned
[6]. Particle filters [7, 8] can deal with non-linear sys-
tems and non-Gaussian models, and can therefore be
viewed as a generalisation of the Kalman filter.

The rest of the paper is organised as follows: we briefly
summarise active appearance models in Section 2, fol-
lowed by a summary of particle filters in Section 3.
The first technique to enhance the standard AAM
tracker is detailed in Section 4, and the second tech-
nique in Section 5. Experimental results are shown in
Section 6. We conclude in Section 7.

2. ACTIVE APPEARANCE MODELS (AAMS)

Active appearance models [1, 9] are template based
and employ both shape and texture. Using them con-
sists of an initial training phase to learn the parameters
for an object (e.g. ®,, § in Equation 1 below) and a
search phase to extract the object in a new image.

In the training phase of AAM, the shape of the
modelled object is defined by a vector of fea-
ture points on the outline of the object, s; =
[Tits e s @insYits - ,-y,-_,,]T, i=1,...,0 where [ is the
number of training images and n the number of fea-
ture points. The shapes are normalised with respect
to translation, scale and rotation and this is done by
setting up a common coordinate reference. Then all
the shapes are aligned to this reference giving rise
to a parameter known as the pose p. Using the
pose and the common coordinate reference, an aligned
shape (now in relative coordinates) can be translated,
scaled and rotated to its original version (in abso-
lute coordinates). The texture of the object in ques-
tion is described by a vector, g; = [g:1, gi2, - - - ,gm]T,
i = 1,...,1 with m the number of texture points.
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Typically a piece-wise affine warp based on the Delau-
nay triangulation is used to collect the texture points.
Principal component analysis (PCA) is performed on
the aligned shapes and textures and this yields

S = g + @sbs (])
g =g+ (2)

where @, and ®, are the eigenvector matrices of the
shape and texture covariance matrices respectively and
b, and b, are the PCA projection coefficients.

A combined model parameter ¢ is obtained by com-
bining the PCA scores into b = [¥b,, bg]T and per-
forming a third PCA

b= d,c, (3)

where W, is a weighting matrix between pixel in-
tensities and pixel distances and ®. is the basis for
the combined model parameter space. Writing ®. =
['I'C__,.,., P, g] T, it is now possible to generate new shapes
and texture instances by

S =

g =

54+ ®.9.'®. .c (4)
g+®,P.4c (5)

In the search phase of AAMSs, the model parameter
c and the pose p are sought that best represent an
object in a new image not contained in the original
training set. In practise changing ¢ varies both the
texture and the shape of an object. Suppose we need
to find an object in an image. The idea is to vary ¢
(optimise over ¢) so that the shape and texture gener-
ated by Equation 4 and Equation 5 fits the object in
the image as well as possible. The objective function
that is minimised is the difference

E= ”gmodcl _gir:n,ag_;n:!]l‘2 = ||é'g||2 (6)

between the texture values generated by ¢ and Equa-
tion 5, denoted as g,,, 4.1, and the texture values in
the image, g,,,,,4.- Note that the image texture val-
Ues gjqge for a specific value of ¢ are the values sam-
pled from the shape generated by Equation 4 and then
translated, scaled and rotated using the pose p. This
Euclidean transformation is necessary since the shape
generated by Equation 4 is in the normalised coordi-
nate system and we need to sample the texture values
in the image coordinate system. In summary, the op-
timisation over ¢ minimises Equation 6, i.e. produces
the best fit of texture values.

For the implementation AAMs assumes that there ex-
ists a linear relationship between the differences in tex-
ture values 09 = g,,04e1 — Gimage @a0d the model pa-
rameters’ update, hence

op = R,ég (7)
éc = R.ig, (8)
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where R, and R, are found by conducting a set of ex-
periments and using the results to perform multivari-
ate linear regression. The parameters are fine-tuned
by gradient-descend optimisation strategies.

The optimisation strategy described above, requires a
good initialisation for the following reasons:

e The shape generated by ¢ and Equation 4 is trans-
lated, scaled and rotated using p—a large space to
search.

e The assumption that there exists a linear relation-
ship between the differences in texture values and the
model parameters’ updates is only reasonable for small
updates.

From the discussion, we see that AAMs provide a gen-
eral framework to track or segment different types of
objects. Furthermore, no parameters need to be speci-
fied by an expert to use them. On the downside, AAM
requires objects to have distinct features/outlines and
there is a training phase involved. Also, a good ini-
tialisation is required for the search algorithm.

We used the open-source AAM-APT [10] in our imple-
mentation. For further detail on AAMs, the reader
may refer to [1, 9].

3. THE PARTICLE FILTER

Particle filters (also known as bootstrap filtering and
the condensation algorithm) is a Monte Carlo-type
technique to approximate probabilistic density func-
tions (pdfs).

In the spirit of [3, 8], the state vector &; € R"= de-
scribes the object to be tracked at time step £, while
the measurements are given by z; € R"=. We denote
all the measurements up until the fth time step by
Z; 2 {z;i = 1,...,t}. In the Bayesian framework,
the goal is to find an estimate of a; based on all the
observations Z;. Thus the conceptual Bayes solution
recursively updates the posterior pdf

p(zdm;, Zz—l)P(fBL|Zt—1)
p(zi|Z-1)

as the measurements become available. In the par-
ticle filter, the posterior pdf is approximated by a
weighted random sample set {z}, 7{}L,, > .7 =1
where {@},i = 1... N} is a random measure of support
points associated with the weights {m,i =1...N}.

p(®|Z) = (9)

The particle filter algorithm consists of three phases
that are repeated at each time step and are illustrated
in Figure 1. The selection phase chooses particles
according to their relative probabilities, i.e. particles
with larger weights will be chosen several times, and
those with smaller weights will be selected fewer times
or discarded. During the prediction phase the selected
particles are put through the process model to gener-
ate a prior pdf p(z;|x;—1). To account for process
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Rﬁ(ﬁlzr)=p(znl x ) pel Jp(x, |2 Jax.,

Figure 1: A graphical illustration of one iteration of
the particle filter. (Image courtesy of S.Fleck [11].)

noise, the particles are diffused by adding noise to
them. The measurement phase updates the weights
in the light of the new measurement z,
; zi|zy =
i = ;f( e = i) —. (10)
Zn:l p(zf|wt = xt )

4. ACTIVE CONTOURS AND ACTIVE
APPEARANCE MODELS

The combined active contour and active appearance
model (AC-AAM) finds a shape to initialise the AAM
algorithm using active contours and was proposed by
Sung & Kim [12]. This method rectifies the situation
in which AAM only works locally well. A summary of
this technique is presented below.

4.1. Contours and shape space

B-splines, see 7, 13] for example, are used to model
the outline of the tracked object. Given a set of co-
ordinates of control points (z1,41),--.,(Zn,yn), a B-
spline is the curve (7(s) = (z(s),y(s)) formed by a
parametrisation with parameter s on the real line,

o[l o

where B(s) is the n x 1 vector of B-spline basis func-
tions, and Q", QY are the vectors of control points
determined by listing all the x-coordinates and y-
coordinates respectively. We refer to a curve as defined
by Equation 11 as a contour.

The dimension of the vector space spanned by r(s)
is No = 2Np, where Np is the number of control
points of the B-spline. This implies Ng degrees of
freedom and it means that the object can deform in
Ng different ways if we track it over different frames.
This amount of allowable deformation leads to many
tracking errors. To rectify this situation, the allowable
deformation is restricted to a lower dimensional space,
known as the shape space.
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Figure 2: An example output from the Canny edge
detector with a contour and its normal lines.

The shape space is defined as a linear mapping from
a shape vector X € RM- to a spline vector Q =

Q. Q”']T € RV and the mapping is given by
Q=WX+Q, (12)

where W is a matrix with rank Nx < Ng, describ-
ing the allowable transformations. Variations are com-
pared against the template curve Q. By restricting
X, we can clearly restrict the transformations away
from Q.

4.2. Active contours

Following Blake & Isard [3], we summarise the contour
based particle filter. Adapting a particle filter for a
particular implementation, requires the specification
of the state vector, process model and measurement
model.

The state vector: The state vector at each time step
t is given by the shape space vector. Thus x; = X;.
This allow us to generate a vector of B-spline control
points @ for each particle using Equation 12.

The process model: States evolve according to a simple
random walk given by

xi =xi_, + Siul (13)

where S is the process noise covariance and u} is a
vector of normal distributed random variables. One
can use more sophisticated process models and the
reader is referred to [7] for a detailed discussion.

The measurement model: The binary edge map for the
current frame is given to the algorithm to estimate the
weight associated with each particle. An example of
such an edge map, with a contour, its control points
and normal lines superimposed on the edge map, are
illustrated in Figure 2. To calculate the weight for the
ith particle, the following procedure is followed:
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e Using Equation 12 and the state vector, calculate the
vector of control points Q.

e Calculate the normal lines for each control point.

e For each control point, search along the normal line
until an edge is found. Let the distance from the con-
trol points to the edge be d;,j = 1,...,n where n is
the number of control points. If an edge is not found,
set the distance equal to the length of the normal line.
Calculate the total length d' = 377, d;.

e The weight for the ith particle is then given by

i = exp (— (di}z) . (14)

o2

The weights are normalised afterwards to sum to unity.
From equation Equation 14, we see that a small value
of d will result in a larger value of 7; and vice versa.
Furthermore, the variance o determines how much
preference we give to particles with a lower distance,
d', or not.

4.3. Initialisation of AAM with AC

The AC-AAM tracker consists of two parts. In partic-
ular, at time step t, the first part performs standard
active contour tracking and let the estimate from the
tracker be xy. In the second part, Equation 12 is used
together with x{ to generate a shape estimate

Qi = Way + Q. (15)

Notice that Q7 and the AAM shape representation, s,
(not normalised with respect to the pose) are equiva-
lent. This shape, Qy, is then used to initialise stan-
dard AAM optimisation and the result is output as the
best fitted AAM. Sung & Kim [12] use the result of the
AAM to initialise the active contour tracker again, but
we find the aforementioned scheme adequate.

This technique uses the particle filter indirectly. The
particle filter is an integral part of the active contour
tracker, but the AAM part of the AC-AAM tracker
does not utilise the particle filter.

5. AN ACTIVE APPEARANCE MODEL BASED
PARTICLE FILTER

This section elucidates the second approach in order to
increase the robustness of the AAM tracker. It is based
on a direct combination of an AAM with a particle
filter and was introduced by Hamlaoui & Davoine [14]
with some additions made by Fleck et al [15]. It differs
from the previous technique in the sense that the AAM
is not initialised by a secondary technique, but instead
temporal filtering predicts the parameters of the AAM.
This way, history of the object improves the overall
robustness of the AAM.

As in the case of the active contour tracker, the adap-
tion of the particle filter to work in conjunction with
an AAM, requires the specification of the state vector,
the process model and the measurement model.
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5.1. The state vector

The state vector is a combination of the model param-
eters ¢ and the pose p and at time step £ it is given
by

@, = [p] . (16)

From this it is clear, that one can synthesise a shape
and texture for a particular image given the model
parameters.

5.2. The process model

The states evolves according to
S R N
x) = &y + {R*’] 09,1 + S u (17)
"

where &;_, is the estimate of the state vector at time
step t — 1, S\ is the process noise covariance and u(?)
is a vector of normally distributed random variables.

5.3. The measurement model

Since the purpose of the measurement model is to clas-
sify how good a particular particle fits the underly-
ing image, the optimisation criterion (equation Equa-
tion 6) will be used. Hence, for each particle the afore-
mentioned norm is calculated and the pre-normalised
weight is then given by

. E2
T, = exp (—J—;) (18)

where o plays the same role as in the case with the
active contour particle filter.

6. EXPERIMENTAL RESULTS

We implemented the AAM-based particle filter tracker
in Ct++. The active contour implementation was done
in MATLAB. To illustrate the effectiveness of the track-
ers, they were used to track a hand moving against a
cluttered background and the results are available for
download from the project’s website [16]. The model
of the hand consists of 13 feature points and the AAM
was trained using 4 images.

Tracking results of performing deterministic AAM
tracking is shown in Figure 3. It is clear that this
approach cannot handle fast movements well as ex-
plained in Section 4.

In Figure 4 the results obtained with the AC-AAM
tracker are shown, while the corresponding results ob-
tained with the AAM-based particle filter are illus-
trated in Figure 5. Both trackers are able to track the
complete movement of the hand accurately.

When the AC-AAM approach is used, a simple dy-
namic model for the active contour tracker suffices.
This can be seen in Figure 4 where the output of the
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(d) Frame 310

Figure 4: A selection of frames to indicate the results
of the AC-AAM tracker. The blue shape is the active
contour’s estimate and the green is the result after
applying the AAM search algorithm, initialised with
the blue shape.

(d) Frame 310

Figure 3: A random selection of frames to indicate

the performance of the deterministic AAM tracker.

In (b), (¢) and (d) the tracker loses its target due to
fast movements.



Vol.98(2) June 2007

(a) Frame 10

(d) Frame 310

Figure 5: Selected frames to indicate the performance
of the AAM-based particle filter tracker.
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active contour tracker is not as accurate, but the re-
sulting AAM fit is. This illustrates the principal idea
of the AC-AAM approach: the robustness of the active
contour tracker is used to initialise the AAM which in
turn, adjusts well to the underlying image.

7. CONCLUSION

We discussed two techniques to enhance the determin-
istic AAM tracker. Central to both techniques is the
particle filter. The effectiveness of the trackers was
illustrated by presenting the tracking results of an ob-
ject moving against a cluttered background.

Using the A AM-based particle filter has the advantage
that extreme deformations can be learned in a single
step. If this is require for the AC-AAM tracker (we
can only handle transformations up to an affinity), the
active contour as well as the AAM must be trained.

We expect that the runtime of the AC-AAM will be
better compared to the AAM-based particle filter and
we are currently working on creating a common frame-
work to verify this claim. Future work includes the

investigation of techniques to deal with occlusions in
the AC-AAM tracker.
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Abstract: A radar system observes an aircraft once during each scan of the airspace, and uses
these observations to construct a track representing a possible route of the aircraft. However when
aircraft interact closely there is the possibility of confusing the identities of the tracks. In this study
multiple hypothesis techniques are applied to extract an identity confidence from a track, given a set
of possible tracks and observations. The system utilises numerous estimation filters internally and
these are investigated and compared in detail. The Identity Confidence algorithm is tested using a
developed radar simulation system, and evaluated sucessfully against a series of benchmark tests.
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1. INTRODUCTION

Radar operates in a noisy world. It is the task of radar
tracking software to keep track of an airplane, given
noisy measurements and aircraft estimates. This is dif-
ficult since the measurements from different airplanes
can be mixed and false detections are also a possibility.
Sometimes the target remains undetected for undeter-
mined lengths of time causing missed detections.

It is therefore unrealistic to expect a tracker to op-
erate without error indefinitely, and identity checking
mechanisms are used to ascertain that the aircraft that
enters the airspace is in fact the aircraft that lands.
In aerospace, the airplane identity is usually confirmed
with the use of transponders or by means of radio com-
munication. In military situations however, such air-
craft identification is not always possible.

It is sometimes unavoidable for airplanes to manoeuvre
close to one another, causing situations where identity
confirmation is not straightforward. In combat situa-
tions radio silence is often enforced, and visual inspec-
tion often involves close quarters flight patterns.

Therefore in case of non-operational transponders, it
is useful to determine to what extent two closely en-
countering aircraft might be confused with one another.
Figure 1 illustrates a scenario involving two confirmed
airplanes A and B with end positions supplied by a
tracker. The tracker decided in this case that plane A
moved to position A and plane B to position B, but
the situation might have been indeed the opposite.

For a radar operator looking at aircraft interacting on
the screen it can be useful to have an analysis tool that
shows the identity confidence probability for a specific
track. This can offer useful supplemental advice to aid

interaction
uncertainty

| A
?}g"’ \“\:‘% N -l
|
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possibility 1

‘possibility 2
Figure 1: The interaction of two flight paths

human judgement during difficult decision making.

The following factors play a role in this problem:

¢ History: The movement history of an airplane is im-
portant, and can be used to predict future positions.
Past behaviour is also a good indication of future be-
haviour, for example an airplane starting a manoeuvre
is more likely to be unpredictable than one flying a
straight path.

¢ Dynamics: When engaged in an manoeuvre, aircraft
dynamics can restrict the kind of motion that is achiev-
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able. A pilot can make a 5g turn in combat, but any-
thing higher is likely to be to his detriment.

e Radar characteristics: The radar site location and
noise parameters largely determine the extent of the
confusion. A radar typical makes greater azimuthal
error than range error.

Approaching the problem from the radar tracking side,
many of these aforementioned factors can be easily in-
tegrated. Kalman filters for example are designed to
cope with noise corrupted measurements.

Radar tracking is a field with many methodologies. The
simplest is the Global Nearest Neighbour (GNN) tech-
nique that gates (i.e. selects) measurements around
each track, and then associates each measurement with
a track to minimize the sum of measurement-to-track
distances.

Bar Shalom [1] is a proponent of Probabilistic Data
Association (PDA), where every track is updated by
a weighted sum of all observations within the gating
distance. Special attention needs to be paid to creation
of new tracks and track interaction.

Reid [2]| introduced the Multiple Hypothesis Tracker
(MHT) that operates by considering every possibility
of data association, and assigning a probability to each
hypothesis. Instead of making a hard decision like the
other techniques, the possibilities are propagated into
the future with the idea that future data will resolve
uncertainties. In a MHT hypothesis an estimation filter
is assigned to each aircraft to give the best possible
estimate of position and velocity.

After first covering general radar background, we will
investigate estimation filters in the Track Modeling
section after which it will be integrated with the MHT
in the Track Management section. Multiple Hypoth-
esis techniques seem promising to handle the desired
factors, and we extend it from a normal tracker to serve
as an analysis system.

2. RADAR BACKGROUND

The radar system of this study is a mechanically
scanned search radar, with a rotating antenna that cov-
ers the entire search volume after one rotation. Ob-
servations (also known as hits) are received at regular
intervals (typically 4 - 10 seconds), and from this a
tracker creates tracks that represent estimated aircraft
motion. A functioning radar device of a local com-
pany is used as subject for further simulations, and
this radar has a search volume range of 65 km to a
height of 8 km. It cannot make height detections, so
only azimuthal and range measurements are therefore
available.
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Figure 2: View from top of a radar situation, with
detail of a noise covariance.

The radar observations are corrupted by noise as de-
picted in Figure 2, and the noise parameters are spec-
ified properties of a radar system (for our system, az-
imuth deviation 0.01222 radians and range deviation
18m). Visual sightings and position communication via
radio can augment a tracking system. In combat sit-
uations Identification Friend or Foe (IFF) systems are
used to identify aircraft, but usually only over speci-
fied zones. Radio silence during combat is however the
standard. Thus even if an aircraft is identified at a spe-
cific moment, that certainty could be lost during close
encounters with other targets.

3. TRACK MODELING

The radar observations received could be used as the
approximated position of an aircraft, but there is more
information available than this noise-corrupted data
leading to better estimates. Two methods of tracking
are discussed: Kalman filter and the Integrated Multi-
ple Model technique.

3.1. Kalman filter

The Kalman filter [3] is a recursive filter with its gain
being continuously adjusted based on the measure-
ments received, the target dynamics and the noise mod-
els. The Kalman gain determines to what extent the
estimate is either influenced by the measurement or in-
fluenced by the dynamic process model.

We used a linear Cartesian filter, with 4 or 6 states
depending on whether acceleration is included as part
of the model. A 4-state filter will perform better on
simple linear motion, while a 6-state will track a turn
better.
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Predict:

The prediction for the state at time & is made before
the measurement is received, by multiplying the state
transition matrix A with the previous estimate. The
covariance of the estimated state error P is predicted
in a similar way, with the process noise covariance Qy,
taking into account inaccuracies of the dynamic model

ik | k—1) =
Pk|k—1) =

Ai(k—1|k—1)
AP(k—=1k=1DAT + Q. (1)

The choice of Q covariance is an important matter since
it expresses the dynamics of the aircraft. A Kalman fil-
ter with a large covariance will track difficult manoeu-
vres better, but with estimation performance dropping.

Update:

The innovation € is the difference between predicted
measurement and the actual measurement

e(k)=z(k)— Hz(k | k—1). (2)

The innovation covariance S(k) of the estimated mea-
surement includes the measurement noise covariance
Ry, and this is used in the Kalman gain K (k)

S(
K(k) =

to)
e
|

HP(k | k—1)H" + Ry, (3)
P(k|k—1)HTS(k)"". (4)

Now the state estimate #(k) is calculated by taking
the state prediction and adjusting it according to the
innovation and the Kalman gain. The state error co-
variance estimate is calculated for time step k& with the
use of the Kalman gain

(k)
P(k [ k)

Bk | k— 1)+ K(k)e(k)
(I — K(k)H)P(k | k —1). (5)

3.2. Interacting Multiple Model filter

The Interacting Multiple Model (IMM) estimator (as
described by [4, p 455]) mixes the estimates from r
Kalman filters according to how well it tracks the ob-
ject. A Markov model describes the transition between
the filter modes, meaning that there are specific prob-
abilities that a target will change from one manoeuvre
configuration to another.

In this way a low manoeuvre Kalman filter can be used
for straight sections, while a high manoeuvre Kalman
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filter can be used for sections with sudden direction
changes. As one performs better, its influence is in-
creased in the mixed output, and similarly decreased
as the performance drops.

Calculation of miz probabilities:

This step calculates the probability that one mode
switched to another. The variable ji;; expresses the
probability that mode M; was active at & — 1 given
that Mj is active at &

pi (k=11 k=1) =

pijpi(k =1) _ pijpi(k —1)
iy pijpi(k — 1) 2
(6)

Mizing:

Each filter calculates a new state by mixing all the fil-
ters together according to the mode transition proba-
bilities, where r is the number of modes and j =1...r

ii*’(;;—uk—n

i=1

i (k-11k-1) =

The covariance is combined in a corresponding manner

PY%(k—1|k-=1)
= iﬂ-¢|j(k—1|k—1){P(k—1 |k—1)+
i=1

[@(k =1 k=1)=a%(k 1] k-1)] -
[;f;*"(k—l|k—l)—:&uj(k—llk_l)]!}'(s)

Filter update and mode probability calculation:

With % and P"% assigned as mixed states of filter j,
measurement z(k) now updates each individual filter
estimates in using these mixed states.

The likelihood A; associated with the filter j is calcu-
lated with use of the innovation covariance S%, and
assumed to be Gaussian with mean at the state posi-
tion estimate 2%. Each filter has a mode probability i,
that represents the probability that the current filter is
active given the measurement history. With ¢; given
by Equation 6, the likelihood and probability are given
by

Aj(k) = Nlz(k);2%, 5%
A;(k)é;
) = ®
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Figure 3: a) IMM tracking a 2g turn.
b) Mode probability of the high manoeuvre filter.

The mode probability for time k is calculated using
the likelihood derived during the update step, together
with the Markov transition probabilities and the mode
probabilities from time & — 1.

Estimate and covariance output:

Up to now each filter is mixed separately, and only in-
fluences each other during the mixing state. An output
can be determined at any time by mixing these filters
using the mode probabilities as weights. So it is sim-
ilar to the mixing step in Equations 7 and 8, but this
output is not fed back into the algorithmic loop

& (k | k) ZxJ k) (k| k) (10)
P(k| k) ij PGk k) +
[:rJ(k|k)—;vk|k)]-
(7 (k | k) — 2 (k | k)] } (11)

IMM Ezample:

Two filters form part of the ensemble: a 4-state low
process noise filter to handle straight predictable path
sections and a high process noise 6-state filter for track-
ing more intensive manoeuvres.

In this example an airplane flies at an altitude of 4km
with a velocity of 300m.s~! and then executes a 2g
turn. Figure 3a shows the route measurements tracked
with predictions and estimates, and Figure 3b the mode
probability of the high manoeuvre filter on the right.
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Figure 4: Test flight configuration.

Filter name RMS(Ay) Improvement
Kalman-4 500.602m 9.09%
Kalman-6 516.678m 6.17%

IMM 486.968m 11.56%

Table I: Comparison of filters.

3.3. Comparison

The performance of the Kalman and Multiple Model
filters is now evaluated by comparing the root mean
square error of the estimated position. At time step
i the root mean square of difference between the true
position y; and the position estimate g; is taken given
by Equation 12.

RMS(Ay) = (12)

Figure 4 is an example of a flight configuration that
contains straight sections and two tight 5g turns. The
results are given in Table I, the improvement listed is
the percentage it improves from the RMS error of the
raw observation. The Kalman 6-state generally per-
forms better on turns, but does not perform well in
straight sections. The IMM filter mixes between a low
process noise 4-state and a high-process noise 6-state
filter, and in this case it performs the best. For other
test configurations it also scores consistently higher,
and has superior capability to cope with different kinds
of motion.

4. TRACK MANAGEMENT

An estimation filter alone would be sufficient for the
tracking of a single object under ideal conditions, but
the noisy nature of the measurements can make the cor-
rect association a difficult task when multiple aircraft
interact closely. This is made even more difficult when
considering the additional challenges faced by a radar
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system such as false and missing reports, new targets
and targets that end.

4.1. Multiple Hypothesis Tracker

The Multiple Hypothesis system manages a collection
of hypotheses, each hypothesis representing a situa-
tion of possible targets and paths that could have been
taken. So each hypothesis consists of a collection of
tracks, where a track is a sequence of measurements
and missed detections that represent the possible move-
ment of an aircraft.

For each scan of measurements, the MHT looks at each
of the existing hypotheses and creates new hypotheses
for every possibility of track-measurement association.
Missed detections, false targets and new targets are
handled as well.

The next step is to estimate and predict the tracks.
Each track of a hypothesis is represented by an esti-
mation filter (Kalman or otherwise), and each one is
updated according to the previously associated mea-
surement.

Now the probability of a hypothesis is updated accord-
ing to the measurement association and its nature. Af-
ter this the hypotheses are compared, and those that
are less likely are removed. At this moment the system
awaits the next batch of measurements to restart the
cycle.

4.2. Theory

Following Blackman [5], the probability that hypothesis
K happened is given by:

TR
s B T [ Pro(Di Py

QK =

Ni
(1= Pp)P M T f(zi03))] (13)
=1
where the algorithm is described below.
o Gph, B3 The sources of the tracks. An assump-

tions is made that targets arise randomly in space with
uniform probability densities. Fpp represents the den-
sity for false targets, and Gyp for new targets. These
densities are compounded for the false targets nry and
the true targets ng.

e Prr(D;): The likelihood of a track disappearing from
the search volume given the track length D;.

. Pg ', (1= Pp)Pi=Ni . The probability of detection Pp
(an aspect specific for a radar system) is compounded
for the N; detections of the track and the remainder
(1 — Pp) for the D; — N; missed detections.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 63

e f(zi(4)): The main contribution to the probability of
a hypothesis is to what extent the observation z;(j) as-
sociate successfully with the track i. Finding this prob-
ability we use a multivariate Gaussian distribution to
describe the probability density function of the resid-
ual error (the difference between the predicted and the
real measurements).

The innovation covariance S and the observation pre-
diction £ of the track’s Kalman filter is given by:

HPHT + R,
Hi(k | k—1).

S =
2k | k—1) (14)

The difference between the predicted and real observa-
tion is given by:

(k) = 2(k) — 5(k | k- 1). (15)

The density function is evaluated with the observation
as input:

e-z"'s-‘z/g

(2m)P/2 /ST

£(2) = N[z(k); 2(klk - 1), 5] = (16)

4.3. Ezample

scan 1 scan 2 scan 3

* a

Z/l %6 X b
Xa

1 hypothesis with
2 targets

(a, b) = measurement a
associated with plane 1,
measurement b
associated with plane 2
X = missed detection

NT = new track

Figure 5: Example of hypothesis branching over time.
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P(Ha) = BuBpPh(1—Pp)[[gar.as
P(Hp) = B2,Pp(1-Pp)[[osr.8s
P(He) = B2.6:;PH(1— PD)QHQUL.CM (17)

Figure 5 illustrates the tracking of the flight of two
aircraft over three sets of received measurements and
Equation 17 the resulting probabilities. A single hy-
pothesis at the start represents two airplane tracks,
and at each scan the hypothesis is branched into new
hypotheses. In the figure, a branching tuple (a,b) in-
dicates that measurement a of the current scan associ-
ated with track of plane 1 and measurement b associ-
ated with track of plane 2. H, considers observation
a of scan 3 correctly as a false target, while Hg and
He consider it the start of a new target. During scan
2 there is only one observation so a target has been
missed. H¢ considers that single observation as a false
target.

Figure 5 is a relatively simple example, and the hy-
pothesis tree generated is substantially more involved
than the one depicted here. Culling is therefore essen-
tial to prohibit an unmanageable number of hypotheses
as demonstrated at the end of scan 2.

5. IDENTITY CONFIDENCE

A tracker outputs a series of tracks each consisting of
a set of associated observations, while the other re-
maining observations are considered false targets. The
task of identity confidence estimation is to take a track,
and by comparison with the remaining observations,
determine the probability that its identity integrity re-
mained preserved.

The idea is to use the MHT algorithm retrospectively
and to consider all the other likely possibilities. Given
the initial tracks and their endings, the MHT can re-
construct possible track associations and combine the
probability of all hypotheses sharing a specific track
start and ending.

This is similar to using a MHT as a tracker, but differs
by giving initial tracks as input. The algorithm can
be applied with more focus on an area of interest, and
since real time usage is not that important in this con-
text, it can be simulated at greater depth. In essence,
the hypotheses with all the different possible variations
of the initial track are compared with hypotheses where
the initial track do not occur. Where H|tracks] select
the hypotheses containing any of the supplied tracks,
and track|z,, 23] selects the tracks starting with z, and
ending with z,
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Pz, — z,) = ZP(H[t-rack[zm 2]]) (18)

gives the probability that an aircraft moved from start-
ing observation z, to the suspected end observation zy.
Using the MHT in this way the algorithm can handle
any radar site setup, flying configuration and manoeu-
vre. The simplest case of interacting aircraft is a cross-
ing bypass flight. Two airplanes flying directly next
to each other in the same direction offers no chance
of track identity preservation. On the other hand, fly-
ing past each other in opposite directions no confusion
should be possible. Figure 6 shows results of different
bypass configurations for 100 runs each expressed in
histogram format. The probability considered is the
probability that the airplanes did indeed cross. With
10 degree crossing the choice between the two possi-
bilities (as shown in Figure 1) is equally likely, while
at 140 degrees confusion is considered unlikely. These
results confirm intuition.

In combat situations a visual inspection is a common
manoeuvre. When a aircraft of unknown identity en-
ters the airspace, another aircraft is dispatched to iden-
tify the target. This involves close quarters manoeu-
vring as the inspection aircraft swoops in behind its
quarry and there is good chance of target identity con-
fusion during the manoeuvre.
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Figure 6: Identity confidence of a bypass flight.
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various values of d.

This flight pattern is depicted in Figure 7. In this sit-
uation we will compare the probabilities obtained of
paths bypasses various distances of d.

Figure 8 shows that at 1 km bypass there is not much
certainty to be attached to any identity. For larger val-
ues of d the certainty rises until at the farthest bypass
of 6 km the identities most probably remain preserved.
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6. CONCLUSION

Posed with a problem from the industry to determine
the identity confidence of radar tracking results, we
have decided to approach the problem from the radar
tracking methodology side. Multiple Hypothesis Track-
ing is a good way to extract probabilities from a sce-
nario, and it uses numerous Kalman filters to estimate
the best hypotheses. Variations of filtering were consid-
ered, and the Interacting Multiple Model filter proves
to perform the best.

Extending the MHT and using it ex post facto on
tracker output, we now have a robust system that
can handle multiple aircraft while incorporating uncer-
tainties of radar environment with ease. By applying
the identity confidence system on simple bypass flight
benchmark, the results obtained match the expected.
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Abstract: The concept of an Image Difference Spectrum, a novel tool for the extraction of global
image information, is introduced. It is shown that Image Difference Spectra are fast alternatives to
granulometric curves, also referred to as pattern spectra. Image Difference Spectra  are
computationally easy to implement and are suitable for real-time applications.

Key words: Feature Extraction, Granulometries, Pattern Spectra

1. INTRODUCTION

Granulometries are useful tools for image analysis due to
their ability to characterize size distributions and shapes
and have been used extensively for feature extraction for
classification, segmentation and texture analysis [1, 2].
Traditionally, granulometries are obtained using a series
of openings or closings with convex structuring elements
of increasing size. The granulometric analysis of an
image results in a signature of the image with respect to
the granulometry used which is referred to as
granulometric curve or pattern spectrum. Due to the
computational load associated with the calculation of
granulometries, Vincent [3, 4], building on the work of
Haralick et al. [2], proposed fast and efficient
granulometric techniques using linear openings.

The Image Difference Spectrum algorithm proposed in
this paper is not a morphological algorithm, but similar to
morphological pattern spectra, the proposed algorithm
extracts size distributions which can be used as global
image features for a wvariety of pattern recognition
applications.

2. IMAGE DIFFERENCE SPECTRA

The idea behind an [Image Difference Spectrum is
compactly summarised by the following two definitions:

Definition 1: An [Image Difference Spectrum, Q. is
defined as a normalized representation of the number of
occurrences of the lengths of Segments of Increase in
each line of a greyscale image, &, having N rows
indexed by »n ,and M columns indexed by m .

Definition 2: A Segment of Increase is a group of
consecutive samples in a row of an image @, such that
On,m+1)-D(n,m)>P(n,m)—P(n,m—1)-, where €20
is a Spectral Slack Parameter.

Let Q;, i=1...C, be the Image Difference Spectra for
C different classes. The Spectral Slack Parameter, ¢ , is a

positive parameter chosen to maximize some norm
between all Q;.

Unlike granulometric pattern spectra algorithms, the
Image Difference Spectrum algorithm, given by the
pseudo code in Section 3, is extremely easy to implement
and has a linear complexity directly proportional to the
number of pixels in the greyscale image.

3. PSEUDO CODE

initialize k <0, A<0, Q&0

for n=1: N
for m=1:M
Ae—Ddnm)—d(n,m-1)
if A>A-¢,increment k
else, increment Q(k) and set k « 0
end if
AeA
end for
end for
scale Q by dividing each element by the total number of
pixels, i.e. (k) vk .
M

4. EXPERIMENTAL RESULTS

The Difference Spectrum and Vincent’s Linear Greyscale
Pattern Spectrum [4] have been used to classify greyscale
QuickBird satellite images over Soweto as formal
suburbs or informal settlements. Since Vincent has
demonstrated, using a variety of image applications, that
Linear Greyscale Pattern spectra are faster and just as
useful as conventional pattern spectra, only Linear
Greyscale Pattern Spectra have been considered for
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comparison. The experimental results were obtained
using MATLAB®© code running on a 2 GHz Intel Core 2
Duo processor PC with 2GB RAM.

Only the first 10 bins of the spectra derived from the
training and test sets, were used as the input to two feed
forward neural networks, each having a single hidden
layer with 6 neurons, trained using the Levenberg-
Marquardt back-propagation algorithm. In fact, the Image
Difference Spectra bins can be limited to only the first
three without a degradation in performance.

One hundred images from selected Soweto suburbs,
labelled by a built environment expert from the South
African Centre for Scientific and Industrial Research,
were equally divided into a training set and a test set. For
all images N=M=200. Refer to Figures 1 and 2 for
random image selections from the formal suburb and
informal settlement training sets and their associated
Image Difference Spectra and un-scaled Linear
Greyscale Pattern Spectra.

Linear Pattern Spectrum 1
x 10" Difference Spectra 1

Formal suburb 1

Noa Mm@

2 4 6 8 1012 M

Formal suburb 2 Linear]

%10 Difference Specira 2
% 'a- " "

J“ o w | Vi

6 &8 1 12 U

Figure 1: Soweto formal suburb images with their
associated un-scaled Linear Pattern Spectra and scaled
Image Difference Spectra.
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o* Difference Spectra 2
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[

Figure 2: Soweto informal settlement images with their
associated un-scaled Linear Pattern Spectra and scaled
Image Difference Spectra.
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For each of the two classes there were 25 training images
and 25 test images. Using the Euclidean norm, a Spectral
Slack Parameter of 3, was found experimentally to be
optimal for the training set. For both algorithms a training
and testing accuracy of 100% were achieved. The Image
Difference Spectrum on average executed in 0.39 seconds
and the Linear Greyscale Pattern Spectra on average in
1.11 seconds for a structuring element (which determines
the number of bins) of 10. Calculating the Linear
Greyscale Pattern Spectra using a structuring element of
60 took on average 14.15 seconds. Note that the number
of bins for the Image Difference Spectrum are determined
by the image characteristics and is not a parameter that
can be selected.

5. CONCLUSION

A novel algorithm for the extraction of global image
information was proposed and its application to the
classification of images was presented. From the results
obtained, it is clear that for the specific application
considered, it performed well, both in terms of accuracy
and computational speed. The algorithm has also been
applied to the classification of seed mixture and steel
surface images with equal success. The proposed
algorithm can be used as a fast and robust alternative to
granulometric pattern spectra.
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