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Abstract: Subdivision schemes are widely used in various applications such as data-fitting, com-
puter graphics and solid modeling. In this paper we present the basic ideas of subdivision schemes
for curves; both interpolatory and corner-cutting schemes, as well as their adaptation to finite se-

quences.
provide an example of surface subdivision.

We conclude with examples of specific applications for these subdivision schemes and
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1. INTRODUCTION

Few people fail to be impressed by the quality of the
graphics of recent animated movies. Geri’s Game
by Pixar is a beautiful example. The keen observer
will note the names of Edwin Catmull and Jim Clark
among the credentials. Their contributions to anima-
tion, based on their subdivision scheme for surfaces,
won them an Academy Award for Technical Achieve-
ment in 2006.

To understand what subdivision is all about, one
should realise that the quality of the three-dimensional
graphics depend, among others, on the modeling of the
objects themselves. As in the case of Geri, one wants
to construct a face based on a limited number of con-
trol points that defines the basic structure. This im-
plies that given the control points, the region between
the control points should be constructed in a realis-
tic way. One can of course use interpolation, typically
spline interpolation in which case the interpolant is
first constructed and then evaluated at the required
points. Should one decide to move one of the control
points the process starts all over. Subdivision schemes
skip the first step of constructing the interpolant. In-
stead it proceeds directly from the control points to
the filled-out surface through an iterative procedure.
Moreover, the process is local with the advantage that
any change in control points have only a local effect.
Changing Geri’s nose by moving a control point does
not for example, affect his mouth. Apart from com-
puter animation, subdivision schemes also find wide
applications in computer graphics and solid modeling.

In this paper we explain the basic ideas behind subdi-
vision schemes on curves before we briefly indicate how
these ideas carry over to the subdivision of surfaces.

Suppose we are given a bi-infinite sequence of points
0 . . -

c® = {(:5) : j € Z}, and are interested in approx-

imating these points with a smooth curve. Standard

ways of doing this involves constructing an approxi-

mating function, e.g. an interpolating spline. Then,
in order to visually represent the approximating func-
tion in computer applications, the function needs to
be evaluated on a sufficiently dense set of points. Sub-
division schemes skip the first step by creating a dense
set of points directly from the given points, i.e. there
is no need to first construct the approximating func-
tion and then evaluate it. This leads to considerable
savings in computational cost.

Of course, if the original points contain noise, the ap-
proximating curve should not pass through them, i.e.
the approximating curve should not be interpolatory.
This can be achieved in different ways: It is possible to
first apply a smoothing operation to the given points
and then do an interpolation, or one can use something
like a smoothing spline. In this paper we describe two
techniques of subdivision, one interpolatory and one
smoothing (or corner-cutting).

Consider the following simple iterative procedure:
Start with a set of points ¢, called the original con-
trol points, and generate a new set of control points

) = {(‘L” j € Z} by taking a linear combination
of the ougmal control points. Repeat this until the
desired density is achieved.

For example if one generates the new control points
using the simple linear combination

(1) (0) (1) 1

0 ,
i =¢; andchH:,—( +c(;+)1) JjEZ, (1)

then the even-indexed elements of the new control
points are simply the original points and the odd-
indexed elements are generated halfway between the
old control points. This step is then repeated indefi-
nitely, roughly doubling the number of points at each
step. In this case the points fill in or converge to the
straight-line segments connecting the original control
points, as illustrated in Figure 1. Thus we obtain a
continuous piecewise linear curve. This simple proce-
dure is an example of a subdivision scheme.

j € Z}, called

In general, given a sequence a = {a; :
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(a) original control points {b) control points after one
iteration

Figure 1: Illustration of the iterative procedure
Equation 1.

the mask of the subdivision scheme, and a sequence
of control points ¢ = {¢; : j € Z}, we define the
corresponding subdivision operator S, by

(Sac); = Z a;_oiCr, j € L. (2)
keZ

The resulting subdivision scheme is then defined, for
a given sequence of control points ¢, by

D =¢ D =g p=0,1,..., (3)
or, equivalently,
0 = c, rtl) = S:;+l(:, r=0,1,.... (4)

Note that the nature of the subdivision scheme is en-
tirely determined by the choice of the mask, i.e. the
linear combination used to generate the new control
points at each iteration. The key therefore is to find an
appropriate mask. The choice of the mask determines
(i) whether the subdivision scheme is interpolatory or
smoothing (corner-cutting), (ii) the convergence of the
scheme, and (iii) the smoothness of the final curve.

These issues are closely related to the existence of a re-
finable funetion, as briefly discussed in the sections be-
low, and refinable functions provide a link to wavelets,
see e.g. [1].

There is no unique or best way of choosing a mask.
One possibility is to demand that if the original control
points fall on a polynomial of a certain degree, then the
newly generated control points must lie on the same
polynomial. This is, in fact, the idea behind Dubuc-
Deslauriers subdivision scheme [2, 3]. In Section 2,
we develop this idea to derive explicit formulae for the
Dubuc-Deslauriers mask and provide an adaptation for
finite control sequences.

In Section 3 we introduce corner-cutting subdivision
schemes and their corresponding refinable functions,
for infinite as well as finite sequences of control points.

A few applications of the subdivision of curves are
given in Section 4 and surface subdivision is briefly
discussed in Section 5.
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2. INTERPOLATORY SUBDIVISION

In this section we introduce the well known Dubuc-
Deslauriers subdivision scheme as an optimally local,
curve filling iterative procedure that reproduces poly-
nomials of a given odd degree. We then indicate how
the limit curve for the Dubuc-Deslauriers scheme de-
pends on the existence of an associated refinable func-
tion and provide an adaption of this scheme for finite
sequences.

2.1. Construction of the mask

Suppose the original control points fall on a polyno-
mial p of degree 2n — 1, i.e. (:50) = p(j), j € Z. Con-
sider the problem of finding the shortest possible mask
a such that all the subsequent iteratives ¢ fall on the
same polynomial. More specifically, we require that

S a-unt) =p(3). icz 5)

kel

The mask is derived from the standard Lagrange poly-
nomials of degree 2n — 1, uniquely defined by

(7)) = Ok,

and therefore satisfying the polynomial reproduction
property

k,j=-n+1,...,n, (6)

T

Y. pk)(z) =p(x), z€R, (7)

k=—n+1

An explicit formula for these Lagrange functions, for

k=-n+1,....n,is given by
n T — .
t@= ] =5 weRr (8)
k==n41 _J
ki

Comparing Equation 7 (with z = %) and Equation 5
(with j = 1), it follows readily that the shortest pos-
sible mask satisfyving Equation 5 is given by

azj = djo0, JEZ (9a)
a2j4+1 f_j (%) 3 j =-n...,n— 1, (gb)
azj+1 = 0, otherwise. (9c)

This mask is known as the Dubuc-Deslauriers mask [3].

Note that Equation 9a implies that Equation 3 satisfies
the interpolatory property

(r+1) _ (1)

Cs; 2 je€LZ, r=0,1,.., (10)

i.e. the Dubue-Deslauriers subdivision scheme is inter-
polatory. Also, the mask coefficients are symmetric,
i.e.

aj = a_j, JjEZL. (11)

Therefore the Dubuc-Deslauriers subdivision scheme
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is interpolatory, symmetric and fills polynomials of de-
gree 2n — 1.

For example, if n = 1, Equation 9, Equation 2 and
Equation 3 yield for » = 0, the iteration procedure of
Equation 1. This subdivision scheme converges to a
continuous piecewise linear function that interpolates
the original control points (see Figure 1).

For n = 2 we get

(-,  j=-2
% Jj=-1
azj41 =4 15 j=0, (12)
- J=1
0, otherwise.

Subdivision with this mask converges to a smooth
function [3], while still interpolating the original con-
trol points, see Figure 2.

{a) control points: original (b) original control points

(e}, after one iteration (o) (®), control polygon after 6

iterations ()

Figure 2: Dubuc-Deslauriers subdivision for n = 2

[t is interesting to note that Knuth based his construc-
tion of TEX fonts [4, Chapter 2] on ideas remarkably
similar to subdivision schemes more than 10 years be-
fore the Dubuc-Deslauriers scheme was introduced in
3]-

Figure 2 suggests that the Dubuc-Deslauriers subdivi-
sion converges to a smooth function for n = 2. For
a proof see [3, 5]. This limiting curve is described in
terms of a refinable function, to be discussed in the
next section.

2.2. Convergence of Dubuc-Deslauriers subdivision

The mask a of a convergent subdivision scheme ensures
the existence of a function ¢ satisfying

o(z) =D a;0(2z—j), zeR. (13)

JEL
We call such a function an refinable function.

[t is shown in [3, 5] that the Dubuc-Deslauriers mask
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a generates a convergent subdivision scheme, which
then guarantees the existence of an associated refinable
function ¢. Moreover, the refinable function inherits
the mask’s finite support and symmetry, as well as
its polynomial filling and interpolatory properties as
follows

o(x) =0, r & (—2n+1,2n — 1), (14)
p(z) = ¢(-x), z€R, (15)
S p(i)é(a - §) = pla), w€R, (16)
JEZ

¢'(J) = O‘_T'_-Uv J € Z, (17)

where p is any polynomial of degree < 2n — 1. Also,
the values of the refinable function at the half-integers
are the values of the mask

¢(L)=a;, je (18)

Finally, given the initial control points e, the limiting
curve f of the Dubuc-Deslauriers subdivision scheme
is given in terms of the refinable function as

f@) = cjo(z—j), z€R (19)
JEL

Some of these properties are illustrated in Figure 3
below.

W16

-11’12

(a) Full support [—3,3]

—_ 9

. s 0

2.0 237 24 26 2.8 3.

(b) Zoomed to [2,3]

Figure 3: Dubuc-Deslauriers refinable function ¢ and
mask a.

The convergence of a subdivision scheme S, ensures
the existence of an associated refinable function since
by choosing the original control points as the delta
sequence ¢ = 0 = {dp; : j € Z} in Equation 4 the limit
curve will be f(z) =3 ;5 dojé(x —j) = d(z), = € R.

The converse of this statement is also true for interpo-
latory subdivision schemes. But for non-interpolatory
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subdivision schemes there are refinable functions for
which the associated subdivision scheme is divergent,
as shown in [6].

2.3. A modified subdivision scheme for finite sequences

The algorithms for bi-infinite sequences, as described
in the previous sections, are applied mainly in the case
of periodic sequences. For finite sequences these algo-
rithms must be modified to accommodate the bound-
aries. Here we consider a method of adapting the
Dubuc-Deslauriers subdivision scheme of Section 2.1
to the situation where the initial sequence c is finite.

The construction of the mask for finite sequences fol-
lows along similar lines as for the infinite case. The
difficulty is that some of the values of the polynomial
p in Equation 7 lie outside the finite domain and need
to be supplied. This implies that an alternative mask
needs to be constructed in the vicinity of the bound-
ary. Following [7] and [8], we fit a polynomial of de-
gree 2n — 1 to the 2n points next to, and including the
boundary. Evaluating the resulting Lagrange polyno-
mials at the half-integers next to the boundary yields
the desired mask. The modified scheme for the left
hand boundary (j = 0,1,...) is given by

=,
20)
(r+1 . (
"323'+1) = Z@j,kcg)r
k>0

where for j =0,1,...,n — 2 (close to the boundary),

ajk =lh—ntr (j+35—n+1) (21)

for k¥ = 0,...,2n — 1, and ajp = 0 for k ¢
{0,1,...,2n — 1}. For j > (n — 1) (away from the
boundary)

l—j(3), k=-n+1+j,....n+]
Ajk =
0, otherwise.

If n = 2, for example Equation 21 gives

%-. k = 0_,

15 _

16 k - 1:
aor=li(3) =9 —15 k=2

1 .

16° k - '3:

0, otherwise,

.

and for 7 > 1 the mask is the same as before (see 12),

1 _ €

T E=0,3

Aj e = % k= 1: 2
0, otherwise.

In the presence of a right hand boundary, the mask

Vol.98(2) June 2007

has to be modified in the same way as the left hand
modifications, with the order reversed.

It is shown in [8] that a set of refinable functions ex-
ists for this modified mask (defined similarly to the
definition Equation 13). The boundary modifications
of the refinable function are illustrated in Figure 4.
The existence of a set of refinable functions for the

Figure 4: The refinable functions associated with the
boundary-modified mask with n = 2

boundary-modified subdivision scheme allows one to
construct wavelets for finite intervals. It is remark-
able that these wavelets have finite decomposition and
reconstruction sequences [8].

Next we discuss the so-called corner-cutting subdivi-
sion schemes.

3. CORNER-CUTTING SUBDIVISION

In the case where the original control points con-
tain noise we would not want to use an interpola-
tory subdivision scheme directly, but rather include
some smoothing in the approximation. Since the limit
curve of corner-cutting subdivision schemes does not
pass through the control points, which amounts to
some smoothing, corner-cutting subdivision schemes
are better suited to this approximation problem. In
this section we discuss one class of corner-cutting
subdivision schemes, namely the de Rham-Chaikin
scheme [9] and its generalization, the Lane-Riesenfeld
scheme [10].

The only difference between the corner-cutting and the
interpolatory schemes discussed in Section 2 lies in the
choice of the mask of the operator in Equation 2. Con-
ceptually, masks with positive entries generate corner-
cutting subdivision schemes, since new control points
are a weighted average of the old control points. The
de Rham-Chaikin mask is given by

1/ 3
L= — ), 7=0,...,3; 22
4 4(3)' J (22)

the corner-cutting property of this mask is illustrated
in Figure 5.
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(a) control points: original {b) original control points

(e), after one iteration (o) (), control polygon after 6

iterations ()

Figure 5: Subdivision with the de Rham-Chaikin
mask Equation 22

Subdivision with the de Rham-Chaikin mask is conver-
gent [9, 11], so that we are guaranteed the existence
of a refinable function. This refinable function turns
out to be the B-spline of degree 2 (order 3), denoted
by B>. Accordingly, the limit curve of this subdivision
scheme is the quadratic spline

flz) = Z(:;&U)Bg(a: -j), zelR (23)

The generalization of this scheme is known as the
Lane-Riesenfeld scheme of order m. The Lane-
Riesenfeld scheme of order m has mask

(m) 1 m .
@; _Qm—l(j )$ i=0,....m (24)

and its limit curve is the spline of degree m — 1 (see
[10]) defined by

f@) =" Bri(a - j) (25)
i

where B,,,_1 is the B-spline of degree m—1. Note that
the smoothness of the limiting curve increases with m.

Note also that the Lane-Riesenfeld mask has finite sup-
port, i.e.

(m) .
a™ =0, jg0.m, (26)
and that the mask elements within the support are all
positive, i.e.

(m) .
a;"’ >0, je0,m] (27)

General results for finitely supported positive masks
can be found in [12, 1].

All that remains to be done in the Lane-Riesenfeld ex-
ample of corner-cutting subdivision is to modify the
scheme in the presence of boundaries. The problem is
the same as before—we need to supply missing values
at the boundary. A very simple procedure is to re-
peat the boundary values as many times as needed. It
turns out that this again leads to a a set of refinable
functions, this time splines with multiple knots at the
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boundary. 'I'hus the boundary-modihed scheme again
converges to a spline of the same degree as defined by
the interior mask.

An example of these modified refinable functions is
shown in Figure 6 and of the boundary-modified sub-
division

Figure 6: Boundary modified de Rham-Chaikin
refinable functions

in Figure 7. Note we have chosen the top left hand
control point as the first and last control points, hence
we get a sharp corner at this point.

{a) original control points (e) (b) control polygon after 6

and control polygon after 6 iterations
iterations ()

Figure 7: Boundary modified de Rham-Chaikin
subdivision

Next consider the control polygon of a shark shown in
Figure 8(a). Here we applied the standard de Rham-
Chaikin, iterated to convergence, and obtained the
sorry-looking shark of Figure 8(b)—a shark with blunt
teeth is no shark at all. Doubling the control points
defining the teeth results in the much happier-looking
shark of Figure 8(c).

4. EXAMPLES

In this section we apply interpolatory and corner-
cutting subdivision schemes to a few practical prob-
lems. The first example is a dynamic signature ob-
tained via a digitising tablet. Figure 9(a) shows the
original signature and the discretisation effects of this
particular tablet should be obvious.

Since the samples are connected by straight lines, Fig-
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=

{a) Original control polygon
(b) Normal de Rham-Chaikin subdivision

() de Rham-Chaikin subdivision with double points defining the

teeth

Figure 8: Keeping corners by doubling control points

ure 9(a) can also be viewed as an example of a Dubuc-
Deslauriers subdivision scheme with n = 1. Fig-
ure 9(b) shows the result of applying successive Dubuc-
Deslauriers with n = 2 and downsampling. It is clearly
smoother than Figure 9(a) but not as smooth as the de
Rham-Chaikin corner-cutting subdivision and down-
sampled curve shown in Figure 9(c).

The next example increases the resolution of an image
through subdivision. (Do not confuse this interpola-
tion procedure with super resolution techniques where
the resolution is increased by extracting additional in-
formation from multiple images.) Figure 10(a) shows
the original image with a subsampled version shown
in Figure 10(b).

We now apply subdivision to the subsampled version
in an effort to recover the original. Figure 10(c) and
(d) show the results of using the interpolatory Dubuc-
Deslauriers scheme with n = 2 and the corner-cutting
de Rham-Chaikin subdivision schemes, respectively. It
is left to the reader to decide which one of the two
schemes provide the more acceptable results.

5. SURFACE SUBDIVISION

In the preceding sections we have limited our discus-
sion to subdivision of curves. In this section we present
the Doo-Sabin subdivision scheme [13] as an example
of surface subdivision. Examples of other subdivision
schemes are described in Catmull and Clark [14], and
Loop [15]. For a good introduction see e.g. [16].

The Doo-Sabin scheme is based on uniform quadrilat-
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S

{a) original Signature

{b) interpolatory subdivision {c) corner-cutting subdivision

Figure 9: Smoothing a signature

(a) original image {b) subsampled image

(b) interpolatory subdivision (e) corner-cutting subdivision

Figure 10: Smoothing an image (detail)

eral faces. It is a vertex split method that is based on
biquadratic B-spline subdivision.

This scheme uses only one mask for all quadrilateral
faces, shown in Figure 11(a). This mask is fitted to
each face with the weights used cyclically to result in
four children vertices per quadrilateral face.

Since some faces in the mesh will not be quadrilat-
eral this mask will not always fit the faces. For the
extraordinary faces (non-quadrilateral faces) we use a
variable mask: for a face with n vertices we use the
mask in Figure 11(b) with
a__i{n—l—f;, - i=0,
"T4n | 3+2cos(Er), ie{l,...,n—1}.

T ’

Notice that the mask for the extraordinary faces re-
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=3
=3

Lp_2

ap__ 5]
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=[]

(a) mask for ordinary faces

faces

1

iy

{b) mask for extraordinary

Figure 11: Doo-Sabin Subdivision scheme masks

duces to the mask for an ordinary face when n = 4.

[n Figure 12, the first two iterations of this subdivision

scheme are shown when applied to a unit cube.

(b) Mesh after first iteration

(e} Mesh after second

iteration

Figure 12: Doo-Sabin subdivision of a cube

Once again the nature of the subdivision scheme and
the limiting surface depends entirely on the choice of
mask. For surface subdivision using triangular meshes,

see [15].
6. CONCLUSION

[n this paper a brief overview of subdivision schemes
for curves was given. The main ideas were explained
In particular, interpolatory and corner-
cutting schemes were discussed and the necessary
boundary modifications for finite sequences were de-
rived. The generalization to surfaces was briefly dis-
The numerical examples demonstrate the
power of these methods to generate smooth curves and

for curves.

sussed.

surfaces from a limited number of control points.
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