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Abstract: Machine vision systems typically classify images of a flotation froth surface into one of a
distinct set of classes. This process typically involves having an experienced operator identify a set of
froth classes. After this, a machine vision system is trained to identify these froth classes. Identifying
these froth classes is particularly challenging for froths which have “dynamic” bubble size
distributions. Using unsupervised clustering algorithms, it is possible to automatically learn these
froth classes without user input. Validation of this technique is done by showing that the identified
froth classes have statistically different relationships between the froth velocity and concentrate
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grade.
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1. INTRODUCTION
1.1 Flotation

Flotation is a separation process used in many mining
operations to upgrade the desired mineral concentration
before further downstream processing. The operation of
the flotation process is a complex one which is not
entirely understood. Each flotation cell has numerous
input parameters (reagent dosage, froth depth, air flow
rate) and is also affected by numerous disturbance
variables (ore type, mill performance). Typically, plant
operators inspect the state of the froth visually, taking
into account such parameters as velocity, bubble size,
texture, colour and stability. Based on the state of the
froth, the operator might make changes to one or more of
the input parameters in order to achieve optimal
performance.

As a result of this, numerous machine vision systems
have been developed to analyse the state of the froth in a
manner similar to that of an experienced plant operator.
The advantage of such an instrument is the availability of
precise, unbiased measurements 24 hours a day.

1.2 Froth Classification

Machine vision systems that monitor froth flotation cells
typically classify the state of the froth into a number of
discreet classes [1, 2, 3]. These froth classes are usually
dependent on the bubble size distribution (texture) of the
froth. The reason for using both bubble size and texture
measurements is that it is not always possible to
accurately segment individual bubbles in a froth. This
means that it is not always possible to determine an
accurate bubble size distribution (BSD) for a froth. Under
such circumstances, texture measures can be used which

allow for the discrimination of froths with different
bubble size distributions. However, the texture measures
do not provide the user with an accurate bubble size
distribution.

The froth classes are usually determined by studying the
fluctuations in a flotation cell over a long period of time
(typically a number of days). Visually dissimilar froth
classes are then identified by experienced operators. The
machine vision system is then trained to be able to
identify whether or not the cell being monitored is in one
of these predetermined froth classes. One of the
disadvantages of such a method is that there is no
guarantee that all possible froth classes will be identified
during the training process. This means that the system
will not be able to provide useful information when an
unknown froth class is identified.

1.3 “Dynamic” Bubble Size Distributions

When the bubble size distribution of the froth being
monitored does not change rapidly over a short period of
time, identification of froth classes by an experienced
operator is a relatively simple process. This is not always
the case; froths exist which have “dynamic™ bubble size
distributions. An example of such a froth is shown in
Figure 1, where two frames of video footage which have
been taken within one second of each other are shown.

This paper will be dealing with froths which have these
“dynamic” bubble size distributions. One of the biggest
difficulties with these froths is identifying different froth
classes. This is because two different froths will look
similar at times when viewed side by side. This dynamic
nature of the froth makes it very difficult to classify
froths into the appropriate classes. It is also a very time
consuming task, that is likely to have multiple operators



Vol.98(2) June 2007

classifying the same data set into different resultant
subsets. Having a solution to finding these froth classes
with minimal operator intervention is of utmost
importance as it results in the availability of consistent
results within a reasonable time frame.

Cumulative Bubble Size Distribution
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Figure 1: An example of a froth with a “dynamic” BSD.
The BSDs are taken from two frames of video which are
within 1 second of each other.

1.4 Objectives

The specific objectives of this paper are to show that
unsupervised classification algorithms can be used to
automatically detect a user specified number of froth
classes. It will also be shown that the froth classes
identified are not random groupings of froth classes, but
are in fact real froth classes that are statistically
significantly different in terms of the metallurgical
performance of the cell at the time of operation when the
froth class was observed.

2. UNSUPERVISED CLASSIFICATION OF
FROTHS

2.1 Froth Data Set

The data set used in this work consists of 105 video
segments. Each of these video segments is one minute in
duration (1500 frames) and was captured from the first
cell of the copper rougher circuit at Kennecott Utah
Copper Concentrator in January 2006. At the same time
that the video footage was captured, metallurgical
samples of the feed, concentrate and tailings of the cell
being monitored were taken. These samples were later
analysed to determine their elemental composition.

Some example images of the froth video segments
collected are shown in Figure 2. It is important to note
that the still images do not capture the dynamic nature of
the froths.

2.2 Bubble Size Distribution Measurements
The bubble size distribution for each of the frames of
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video from all 105 videos was calculated using the
improved watershed segmentation technique [4]. As has
been shown previously, further reduction of the data in
the bubble size distribution to a mean, median or p80
value is not appropriate for dynamic froths such as the
one being examined here [5].

Figure 2: Example images of the froth of the first rougher

cell at Kennecott. Note the different bubble sizes. Single

still images do not provide an accurate description of the
“dynamic” nature of the froth.

2.3 Frequently Occurring Bubble Size Distributions

The frequently occurring BSD algorithm is inspired by
the work of Varma and Zisserman [6], but instead of
finding image textons that occur frequently over an
image, frequently occurring BSDs are determined that are
found from the bubble size data.

A random sample of frames is taken from the entire data
set of froth videos, such that the sample is representative
of all the different bubble size distributions that can be
found in the data set. The cumulative bubble size
distributions are then calculated for each of the frames in
the sample. Once this has been done, an unsupervised
furthest-neighbour clustering algorithm is used to split
the sample into a user specified number of classes. This is
achieved by firstly creating a intra-distance matrix for the
entire set of cumulative BSD samples. The Kolmogorov-
Smirnov distance measure [7] is used to calculate the
distance between two cumulative BSDs. The Matlab
statistics toolbox is used to perform the unsupervised
furthest-neighbour clustering. The intra-distance matrix is
passed to the linkage function, the output of which is
passed to the cluster function. This generates the user
specified number of classes. For this work, eight clusters
are typically used. This value is chosen so that the
number of classes is small enough to ensure that there is
still a visual difference between the images from which
the identified BSDs are generated. The mean cumulative
bubble size distribution can then be calculated for each of
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Figure 3: Frequently occurring BSDs learnt from 500
samples.
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Figure 4: Frequently occurring BSDs learnt from
9000 samples.

Figure 5: Example images of the froths represented by the cumulative BSDs in Figure 4.
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Figure 6: The results of using unsupervised classification to determine three froth classes.
The labels of the histograms correspond to the labels of the BSDs in Figure 4.

segments. This resulting set of cumulative bubble size
distributions is known as the frequently occurring BSDs

[8].

To ensure that the random sample of frames taken from
the entire data set was representative, a test was

performed by looking at the resultant frequently
occurring BSDs that were found for different numbers of
samples. The results from these tests are shown in
Figures 3 and 4. These figures show the resulting
frequently occurring BSDs when the number of samples
drawn are 500 and 9000 respectively. From these figures
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Figures 3 and 4. These figures show the resulting
frequently occurring BSDs when the number of samples
drawn are 500 and 9000 respectively. From these figures
it is evident that a vast increase in the size of sample used
in the unsupervised clustering does not have a significant
impact on the resultant frequently occurring BSDs. The
only difference is that the smoothness of the BSDs is
increased when larger sample sizes are used. The
difference in labelling of the frequently occurring BSDs
is a result of the order in which the outputs from the
clustering algorithm are generated, so the differences in
labelling can be ignored.

Figure 5 shows example images of froths corresponding
to the frequently occurring BSDs shown in Figure 4.

2.4 Characterisation of Dynamic Froths

Using the frequently occurring cumulative bubble size
distributions, it is possible to characterise each video
segment as a histogram. The histogram has the same
number of bins as the number of frequently occurring
BSDs that were identified in Section 2.3. The histogram
shows the percentage of time that the froth has a bubble
size distribution similar to the frequently occurring
bubble size distributions.

The chi-squared distance measure [9] can be used to
provide a measure of dissimilarity between the
characteristic histograms of different froths. It is possible
to create a dissimilarity matrix for the entire data set of
characteristic histograms of froth video segments. This
can be used in an unsupervised clustering algorithm
(furthest-neighbour) to classify the data set into classes
with similar characteristic histograms. Once again, the
Matlab statistical toolbox functions: linkage and cluster
are used to do the clustering.

The results from using these unsupervised clustering
algorithms are shown in Figure 6. Note that the labels of
the bars in Figure 6 corresponds to the bubble size
distributions with the same labels in Figures 4 and 5. The
characteristic histograms are clustered into three froth
classes. This number is chosen for two reasons: firstly,
experience tells us that flotation cells typically have
between three to five different froth classes under normal
operating conditions and secondly, to maximise the
amount of concentrate data per froth class, which is
important to ensure that statistically meaningful results
are obtained.

3. VALIDATION

Froth velocity is an important performance indicator
which is typically used for mass pull and concentrate
grade prediction. In this section, the link between froth
velocity and concentrate grade is used to validate the
froth classes identified by the clustering algorithm
described in Section 2.
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3.1 Metallurgical Responses of Froth Classes

For each of the identified froth classes, the relationship
between the froth velocity and metallurgical content of
the concentrate can be modelled by linear regression.
Different froth classes will have different trends, and so it
is possible to use this information to determine if the
froth classes identified are correct or just random
collections of froths.

If the froth classes identified by the unsupervised
classification algorithm are no more than a random
selection of froths, then the relationships between the
froth velocity and concentrate metallurgy for each of the
froth classes will not be statistically significantly different
from each other.

An example of such a set of regression lines is shown in
Figure 7 which corresponds to a set of three froth classes
which have been generated by randomly selecting their
membership. The values in Table I show the results from
an analysis to determine whether or not the regression
lines from each of the randomly created froth classes are
statistically different. The values are all less than ninety-
five percent. This indicates that one cannot say with
confidence that the lines are statistically different, and
must therefore accept the null hypothesis which is that
there is no difference between these froth classes. This is
exactly what is to be expected from randomly allocated
froth classes.

3.2 Statistical Calculations

This section gives a brief overview of the statistical tests
used for the comparison of regression lines from different
froth classes. For more detail, the reader is referred to
[9.10]. The following series of F-Tests are performed in
order to determine whether or not the regression lines are
statistically different:
1. F-Test for the comparison of data sets’ variance
2. F-Test for the comparison of the slopes of the
regression lines
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Figure 7: Linear trends relating froth velocity to
concentrate grade for three randomly allocated froth
classes.
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Figure 8: The results of using unsupervised classification to determine nine froth classes. The labels of the
histograms correspond to the labels of the BSDs in Figure 4.

Table I: Summary of comparative statistics for three randomly allocated froth classes.

Confidence of

Confidence of

Confidence of

Confidence of

Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 84.08 10.37 55.23 84.08
Copper [Cu] 1 3 53.04 34.01 66.95 66.95
2 3 56.61 29.64 64.78 66.78
Table II: Summary of comparative statistics for three froth classes.
Confidence of | Confidence of | Confidence of | Confidence of
Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 7.89 99.91 99.95 99.95
Copper [Cu] 1 3 5.11 99.99 100.00 100.00
2 3 61.40 99.91 99.96 99.96

Table III: Summary of comparative statistics three froth classes generated using the alternative approach.

Confidence of

Confidence of

Confidence of

Confidence of

Assay Froth Class A | Froth Class B | Difference in | Difference in | Difference in | Difference in
Slope Intercept Mean (Overall)
1 2 63.07 99.99 100.00 100.00
Copper [Cu] 1 3 95.30 100.00 100.00 100.00
2 3 94.58 100.00 100.00 100.00
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Figure 9: Linear trends relating froth velocity to
concentrate grade for three froth classes.

3. F-Test for the comparison of the intercepts of the
regression lines

4. F-Test for the comparison of the mean of the
regression lines.

3.3 Verification of Unsupervised Clustering

Figure 9 shows the resulting trends from using the fitting
of a linear regression model relating froth velocity to
normalised concentrate grade for each of the three froth
classes determined by the unsupervised clustering
algorithm (the copper concentrate grade has been
normalised for confidentiality reasons. The normalisation
process does not however affect the trends observed.) It is
clear from the figure that the trends have different mean
values, unlike the random allocation of froths in Figure 7.

Statistical analysis of the differences between these
regression lines is show in Table II. All three of the
regression lines are different from each other with at least
99.95% confidence.

These results show that the techniques used here to
automatically determine the froth classes present in a set
of videos of dynamic froths give meaningful results and
not just a random selection of froth classes.

4. AN ALTERNATIVE APPROACH
4.1 User Intervention

An alternative approach to the previously mentioned
classification method is now discussed. Unlike the
previous technique, which only relies on the user’s input
for the number of froth classes to be determined, this
method makes use of user intervention in deciding how to
merge a larger set of froth classes into a smaller, more
manageable set of froth classes.

Once again, the unsupervised froth classification
techniques described earlier were used to determine nine
froth classes. These nine froth classes are shown in
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Figure 10: Linear trends relating froth velocity to
concentrate grade for three froth classes using the
alternative approach.

Figure 8. The metallurgical (froth velocity vs. concentrate
grade) responses of these classes were analysed, and
froths which froths were grouped together. It is necessary
to do this, as having nine froth classes results in the
metallurgical data effectively being divided by nine, thus
reducing the statistical confidence that can be put on the
observed trends. The result of this grouping of froth
classes resulted in the middle column of froth classes in
Figure 8 being chosen as the final froth classes.

The final metallurgical responses of these froth classes is
shown in Figure 10. It is clear that different linear
regression models exist for the separate froth classes.
This is confirmed in Table III which shows the results for
testing the statistical significance of the regression lines
being the same. All of the trends relating froth velocity to
concentrate grade for these froth classes have a 99.9%
confidence that they are statistically different. It is also
interesting to note that for this set of froth classes, the
trends have an almost 95% confidence that the slopes are
statistically different. This information is particularly
useful from an operational point of view, as it provides
the operator with additional information which can be
used for the improvement of operation of the cell being
monitored.

5. CONCLUSION

It has been shown that unsupervised clustering techniques
can be used to separate a set of dynamic froths into
visually similar froth classes. The results from the
clustering have been validated by showing that each of
the froth classes identified have statistically different
regression lines relating froth velocity to concentrate
grade. This would not be the case if the froth video
segments were divided into random classes.

An alternative approach which relies more on user
intervention results in very similar froth classes being
identified. This is a further indication that the technique is
giving appropriate clusterings of data. The alternative



44 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

approach also provides additional information for the
operators as the trends modelled have statistically
different slopes relating froth velocity to concentrate
grade.

The major advantages of having a system which is able to
make use of unsupervised clustering are the consistency
of the results, the speed at which they can be obtained
and the fact that this method will enable new froth classes
to be identified in an online setting. This is unlike
manually identifying froth classes which is a difficult,
time consuming and operator dependent process, which
invariably results in a poor set of froth classes to work
with.
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