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Abstract: A radar system observes an aircraft once during each scan of the airspace, and uses
these observations to construct a track representing a possible route of the aircraft. However when
aircraft interact closely there is the possibility of confusing the identities of the tracks. In this study
multiple hypothesis techniques are applied to extract an identity confidence from a track, given a set
of possible tracks and observations. The system utilises numerous estimation filters internally and
these are investigated and compared in detail. The Identity Confidence algorithm is tested using a
developed radar simulation system, and evaluated sucessfully against a series of benchmark tests.
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1. INTRODUCTION

Radar operates in a noisy world. It is the task of radar
tracking software to keep track of an airplane, given
noisy measurements and aircraft estimates. This is dif-
ficult since the measurements from different airplanes
can be mixed and false detections are also a possibility.
Sometimes the target remains undetected for undeter-
mined lengths of time causing missed detections.

It is therefore unrealistic to expect a tracker to op-
erate without error indefinitely, and identity checking
mechanisms are used to ascertain that the aircraft that
enters the airspace is in fact the aircraft that lands.
In aerospace, the airplane identity is usually confirmed
with the use of transponders or by means of radio com-
munication. In military situations however, such air-
craft identification is not always possible.

It is sometimes unavoidable for airplanes to manoeuvre
close to one another, causing situations where identity
confirmation is not straightforward. In combat situa-
tions radio silence is often enforced, and visual inspec-
tion often involves close quarters flight patterns.

Therefore in case of non-operational transponders, it
is useful to determine to what extent two closely en-
countering aircraft might be confused with one another.
Figure 1 illustrates a scenario involving two confirmed
airplanes A and B with end positions supplied by a
tracker. The tracker decided in this case that plane A
moved to position A and plane B to position B, but
the situation might have been indeed the opposite.

For a radar operator looking at aircraft interacting on
the screen it can be useful to have an analysis tool that
shows the identity confidence probability for a specific
track. This can offer useful supplemental advice to aid
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Figure 1: The interaction of two flight paths

human judgement during difficult decision making.

The following factors play a role in this problem:

¢ History: The movement history of an airplane is im-
portant, and can be used to predict future positions.
Past behaviour is also a good indication of future be-
haviour, for example an airplane starting a manoeuvre
is more likely to be unpredictable than one flying a
straight path.

¢ Dynamics: When engaged in an manoeuvre, aircraft
dynamics can restrict the kind of motion that is achiev-
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able. A pilot can make a 5g turn in combat, but any-
thing higher is likely to be to his detriment.

e Radar characteristics: The radar site location and
noise parameters largely determine the extent of the
confusion. A radar typical makes greater azimuthal
error than range error.

Approaching the problem from the radar tracking side,
many of these aforementioned factors can be easily in-
tegrated. Kalman filters for example are designed to
cope with noise corrupted measurements.

Radar tracking is a field with many methodologies. The
simplest is the Global Nearest Neighbour (GNN) tech-
nique that gates (i.e. selects) measurements around
each track, and then associates each measurement with
a track to minimize the sum of measurement-to-track
distances.

Bar Shalom [1] is a proponent of Probabilistic Data
Association (PDA), where every track is updated by
a weighted sum of all observations within the gating
distance. Special attention needs to be paid to creation
of new tracks and track interaction.

Reid [2]| introduced the Multiple Hypothesis Tracker
(MHT) that operates by considering every possibility
of data association, and assigning a probability to each
hypothesis. Instead of making a hard decision like the
other techniques, the possibilities are propagated into
the future with the idea that future data will resolve
uncertainties. In a MHT hypothesis an estimation filter
is assigned to each aircraft to give the best possible
estimate of position and velocity.

After first covering general radar background, we will
investigate estimation filters in the Track Modeling
section after which it will be integrated with the MHT
in the Track Management section. Multiple Hypoth-
esis techniques seem promising to handle the desired
factors, and we extend it from a normal tracker to serve
as an analysis system.

2. RADAR BACKGROUND

The radar system of this study is a mechanically
scanned search radar, with a rotating antenna that cov-
ers the entire search volume after one rotation. Ob-
servations (also known as hits) are received at regular
intervals (typically 4 - 10 seconds), and from this a
tracker creates tracks that represent estimated aircraft
motion. A functioning radar device of a local com-
pany is used as subject for further simulations, and
this radar has a search volume range of 65 km to a
height of 8 km. It cannot make height detections, so
only azimuthal and range measurements are therefore
available.
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Figure 2: View from top of a radar situation, with
detail of a noise covariance.

The radar observations are corrupted by noise as de-
picted in Figure 2, and the noise parameters are spec-
ified properties of a radar system (for our system, az-
imuth deviation 0.01222 radians and range deviation
18m). Visual sightings and position communication via
radio can augment a tracking system. In combat sit-
uations Identification Friend or Foe (IFF) systems are
used to identify aircraft, but usually only over speci-
fied zones. Radio silence during combat is however the
standard. Thus even if an aircraft is identified at a spe-
cific moment, that certainty could be lost during close
encounters with other targets.

3. TRACK MODELING

The radar observations received could be used as the
approximated position of an aircraft, but there is more
information available than this noise-corrupted data
leading to better estimates. Two methods of tracking
are discussed: Kalman filter and the Integrated Multi-
ple Model technique.

3.1. Kalman filter

The Kalman filter [3] is a recursive filter with its gain
being continuously adjusted based on the measure-
ments received, the target dynamics and the noise mod-
els. The Kalman gain determines to what extent the
estimate is either influenced by the measurement or in-
fluenced by the dynamic process model.

We used a linear Cartesian filter, with 4 or 6 states
depending on whether acceleration is included as part
of the model. A 4-state filter will perform better on
simple linear motion, while a 6-state will track a turn
better.
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Predict:

The prediction for the state at time & is made before
the measurement is received, by multiplying the state
transition matrix A with the previous estimate. The
covariance of the estimated state error P is predicted
in a similar way, with the process noise covariance Qy,
taking into account inaccuracies of the dynamic model

ik | k—1) =
Pk|k—1) =

Ai(k—1|k—1)
AP(k—=1k=1DAT + Q. (1)

The choice of Q covariance is an important matter since
it expresses the dynamics of the aircraft. A Kalman fil-
ter with a large covariance will track difficult manoeu-
vres better, but with estimation performance dropping.

Update:

The innovation € is the difference between predicted
measurement and the actual measurement

e(k)=z(k)— Hz(k | k—1). (2)

The innovation covariance S(k) of the estimated mea-
surement includes the measurement noise covariance
Ry, and this is used in the Kalman gain K (k)

S(
K(k) =

to)
e
|

HP(k | k—1)H" + Ry, (3)
P(k|k—1)HTS(k)"". (4)

Now the state estimate #(k) is calculated by taking
the state prediction and adjusting it according to the
innovation and the Kalman gain. The state error co-
variance estimate is calculated for time step k& with the
use of the Kalman gain

(k)
P(k [ k)

Bk | k— 1)+ K(k)e(k)
(I — K(k)H)P(k | k —1). (5)

3.2. Interacting Multiple Model filter

The Interacting Multiple Model (IMM) estimator (as
described by [4, p 455]) mixes the estimates from r
Kalman filters according to how well it tracks the ob-
ject. A Markov model describes the transition between
the filter modes, meaning that there are specific prob-
abilities that a target will change from one manoeuvre
configuration to another.

In this way a low manoeuvre Kalman filter can be used
for straight sections, while a high manoeuvre Kalman
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filter can be used for sections with sudden direction
changes. As one performs better, its influence is in-
creased in the mixed output, and similarly decreased
as the performance drops.

Calculation of miz probabilities:

This step calculates the probability that one mode
switched to another. The variable ji;; expresses the
probability that mode M; was active at & — 1 given
that Mj is active at &

pi (k=11 k=1) =

pijpi(k =1) _ pijpi(k —1)
iy pijpi(k — 1) 2
(6)

Mizing:

Each filter calculates a new state by mixing all the fil-
ters together according to the mode transition proba-
bilities, where r is the number of modes and j =1...r

ii*’(;;—uk—n

i=1

i (k-11k-1) =

The covariance is combined in a corresponding manner

PY%(k—1|k-=1)
= iﬂ-¢|j(k—1|k—1){P(k—1 |k—1)+
i=1

[@(k =1 k=1)=a%(k 1] k-1)] -
[;f;*"(k—l|k—l)—:&uj(k—llk_l)]!}'(s)

Filter update and mode probability calculation:

With % and P"% assigned as mixed states of filter j,
measurement z(k) now updates each individual filter
estimates in using these mixed states.

The likelihood A; associated with the filter j is calcu-
lated with use of the innovation covariance S%, and
assumed to be Gaussian with mean at the state posi-
tion estimate 2%. Each filter has a mode probability i,
that represents the probability that the current filter is
active given the measurement history. With ¢; given
by Equation 6, the likelihood and probability are given
by

Aj(k) = Nlz(k);2%, 5%
A;(k)é;
) = ®
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Figure 3: a) IMM tracking a 2g turn.
b) Mode probability of the high manoeuvre filter.

The mode probability for time k is calculated using
the likelihood derived during the update step, together
with the Markov transition probabilities and the mode
probabilities from time & — 1.

Estimate and covariance output:

Up to now each filter is mixed separately, and only in-
fluences each other during the mixing state. An output
can be determined at any time by mixing these filters
using the mode probabilities as weights. So it is sim-
ilar to the mixing step in Equations 7 and 8, but this
output is not fed back into the algorithmic loop

& (k | k) ZxJ k) (k| k) (10)
P(k| k) ij PGk k) +
[:rJ(k|k)—;vk|k)]-
(7 (k | k) — 2 (k | k)] } (11)

IMM Ezample:

Two filters form part of the ensemble: a 4-state low
process noise filter to handle straight predictable path
sections and a high process noise 6-state filter for track-
ing more intensive manoeuvres.

In this example an airplane flies at an altitude of 4km
with a velocity of 300m.s~! and then executes a 2g
turn. Figure 3a shows the route measurements tracked
with predictions and estimates, and Figure 3b the mode
probability of the high manoeuvre filter on the right.
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Figure 4: Test flight configuration.

Filter name RMS(Ay) Improvement
Kalman-4 500.602m 9.09%
Kalman-6 516.678m 6.17%

IMM 486.968m 11.56%

Table I: Comparison of filters.

3.3. Comparison

The performance of the Kalman and Multiple Model
filters is now evaluated by comparing the root mean
square error of the estimated position. At time step
i the root mean square of difference between the true
position y; and the position estimate g; is taken given
by Equation 12.

RMS(Ay) = (12)

Figure 4 is an example of a flight configuration that
contains straight sections and two tight 5g turns. The
results are given in Table I, the improvement listed is
the percentage it improves from the RMS error of the
raw observation. The Kalman 6-state generally per-
forms better on turns, but does not perform well in
straight sections. The IMM filter mixes between a low
process noise 4-state and a high-process noise 6-state
filter, and in this case it performs the best. For other
test configurations it also scores consistently higher,
and has superior capability to cope with different kinds
of motion.

4. TRACK MANAGEMENT

An estimation filter alone would be sufficient for the
tracking of a single object under ideal conditions, but
the noisy nature of the measurements can make the cor-
rect association a difficult task when multiple aircraft
interact closely. This is made even more difficult when
considering the additional challenges faced by a radar
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system such as false and missing reports, new targets
and targets that end.

4.1. Multiple Hypothesis Tracker

The Multiple Hypothesis system manages a collection
of hypotheses, each hypothesis representing a situa-
tion of possible targets and paths that could have been
taken. So each hypothesis consists of a collection of
tracks, where a track is a sequence of measurements
and missed detections that represent the possible move-
ment of an aircraft.

For each scan of measurements, the MHT looks at each
of the existing hypotheses and creates new hypotheses
for every possibility of track-measurement association.
Missed detections, false targets and new targets are
handled as well.

The next step is to estimate and predict the tracks.
Each track of a hypothesis is represented by an esti-
mation filter (Kalman or otherwise), and each one is
updated according to the previously associated mea-
surement.

Now the probability of a hypothesis is updated accord-
ing to the measurement association and its nature. Af-
ter this the hypotheses are compared, and those that
are less likely are removed. At this moment the system
awaits the next batch of measurements to restart the
cycle.

4.2. Theory

Following Blackman [5], the probability that hypothesis
K happened is given by:

TR
s B T [ Pro(Di Py

QK =

Ni
(1= Pp)P M T f(zi03))] (13)
=1
where the algorithm is described below.
o Gph, B3 The sources of the tracks. An assump-

tions is made that targets arise randomly in space with
uniform probability densities. Fpp represents the den-
sity for false targets, and Gyp for new targets. These
densities are compounded for the false targets nry and
the true targets ng.

e Prr(D;): The likelihood of a track disappearing from
the search volume given the track length D;.

. Pg ', (1= Pp)Pi=Ni . The probability of detection Pp
(an aspect specific for a radar system) is compounded
for the N; detections of the track and the remainder
(1 — Pp) for the D; — N; missed detections.
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e f(zi(4)): The main contribution to the probability of
a hypothesis is to what extent the observation z;(j) as-
sociate successfully with the track i. Finding this prob-
ability we use a multivariate Gaussian distribution to
describe the probability density function of the resid-
ual error (the difference between the predicted and the
real measurements).

The innovation covariance S and the observation pre-
diction £ of the track’s Kalman filter is given by:

HPHT + R,
Hi(k | k—1).

S =
2k | k—1) (14)

The difference between the predicted and real observa-
tion is given by:

(k) = 2(k) — 5(k | k- 1). (15)

The density function is evaluated with the observation
as input:

e-z"'s-‘z/g

(2m)P/2 /ST

£(2) = N[z(k); 2(klk - 1), 5] = (16)

4.3. Ezample

scan 1 scan 2 scan 3

* a

Z/l %6 X b
Xa

1 hypothesis with
2 targets

(a, b) = measurement a
associated with plane 1,
measurement b
associated with plane 2
X = missed detection

NT = new track

Figure 5: Example of hypothesis branching over time.
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P(Ha) = BuBpPh(1—Pp)[[gar.as
P(Hp) = B2,Pp(1-Pp)[[osr.8s
P(He) = B2.6:;PH(1— PD)QHQUL.CM (17)

Figure 5 illustrates the tracking of the flight of two
aircraft over three sets of received measurements and
Equation 17 the resulting probabilities. A single hy-
pothesis at the start represents two airplane tracks,
and at each scan the hypothesis is branched into new
hypotheses. In the figure, a branching tuple (a,b) in-
dicates that measurement a of the current scan associ-
ated with track of plane 1 and measurement b associ-
ated with track of plane 2. H, considers observation
a of scan 3 correctly as a false target, while Hg and
He consider it the start of a new target. During scan
2 there is only one observation so a target has been
missed. H¢ considers that single observation as a false
target.

Figure 5 is a relatively simple example, and the hy-
pothesis tree generated is substantially more involved
than the one depicted here. Culling is therefore essen-
tial to prohibit an unmanageable number of hypotheses
as demonstrated at the end of scan 2.

5. IDENTITY CONFIDENCE

A tracker outputs a series of tracks each consisting of
a set of associated observations, while the other re-
maining observations are considered false targets. The
task of identity confidence estimation is to take a track,
and by comparison with the remaining observations,
determine the probability that its identity integrity re-
mained preserved.

The idea is to use the MHT algorithm retrospectively
and to consider all the other likely possibilities. Given
the initial tracks and their endings, the MHT can re-
construct possible track associations and combine the
probability of all hypotheses sharing a specific track
start and ending.

This is similar to using a MHT as a tracker, but differs
by giving initial tracks as input. The algorithm can
be applied with more focus on an area of interest, and
since real time usage is not that important in this con-
text, it can be simulated at greater depth. In essence,
the hypotheses with all the different possible variations
of the initial track are compared with hypotheses where
the initial track do not occur. Where H|tracks] select
the hypotheses containing any of the supplied tracks,
and track|z,, 23] selects the tracks starting with z, and
ending with z,
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Pz, — z,) = ZP(H[t-rack[zm 2]]) (18)

gives the probability that an aircraft moved from start-
ing observation z, to the suspected end observation zy.
Using the MHT in this way the algorithm can handle
any radar site setup, flying configuration and manoeu-
vre. The simplest case of interacting aircraft is a cross-
ing bypass flight. Two airplanes flying directly next
to each other in the same direction offers no chance
of track identity preservation. On the other hand, fly-
ing past each other in opposite directions no confusion
should be possible. Figure 6 shows results of different
bypass configurations for 100 runs each expressed in
histogram format. The probability considered is the
probability that the airplanes did indeed cross. With
10 degree crossing the choice between the two possi-
bilities (as shown in Figure 1) is equally likely, while
at 140 degrees confusion is considered unlikely. These
results confirm intuition.

In combat situations a visual inspection is a common
manoeuvre. When a aircraft of unknown identity en-
ters the airspace, another aircraft is dispatched to iden-
tify the target. This involves close quarters manoeu-
vring as the inspection aircraft swoops in behind its
quarry and there is good chance of target identity con-
fusion during the manoeuvre.
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Figure 6: Identity confidence of a bypass flight.
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various values of d.

This flight pattern is depicted in Figure 7. In this sit-
uation we will compare the probabilities obtained of
paths bypasses various distances of d.

Figure 8 shows that at 1 km bypass there is not much
certainty to be attached to any identity. For larger val-
ues of d the certainty rises until at the farthest bypass
of 6 km the identities most probably remain preserved.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 65

6. CONCLUSION

Posed with a problem from the industry to determine
the identity confidence of radar tracking results, we
have decided to approach the problem from the radar
tracking methodology side. Multiple Hypothesis Track-
ing is a good way to extract probabilities from a sce-
nario, and it uses numerous Kalman filters to estimate
the best hypotheses. Variations of filtering were consid-
ered, and the Interacting Multiple Model filter proves
to perform the best.

Extending the MHT and using it ex post facto on
tracker output, we now have a robust system that
can handle multiple aircraft while incorporating uncer-
tainties of radar environment with ease. By applying
the identity confidence system on simple bypass flight
benchmark, the results obtained match the expected.
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