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Abstract: This paper presents an object-oriented implementation of ANSI-C for embedded systems. 
It offers practical guidelines for producing generic software libraries and portable applications. While 
various object-oriented implementations of C is available, the aim is to impress a culture of producing 
safe, robust embedded software which can easily be shared and integrated amongst developers and 
systems. Starting from coding standards, a design philosophy is proposed for creating reusable 
drivers, services, applications and finally, a complete real-time operating system. 
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1. INTRODUCTION 

Effective software engineering requires the ability to 
rapidly produce and integrate robust and secure code. The 
key to good software development lies in modular design, 
testing and code reuse.  This is strongly supported by the 
Unified Modelling Language (UML) design philosophy 
[1]. By encapsulating functionality with clear interfaces, 
modules can be identified which can be re-implemented 
within single applications or across projects. 
 
In the object-oriented environment, modules are typically 
defined as classes consisting of attributes and behaviours  
in the form of member variables and methods. In 
embedded systems, object-oriented design is frequently 
hampered by intensive platform dependent hardware 
interfacing and real-time performance requirements. In 
addition, C, which is still the most popular programming 
language for embedded applications, is not inherently 
object-oriented. 
 
An object-oriented implementation of ANSI-C is 
proposed in this paper, which follows the UML approach 
for embedded real-time applications. It promotes code 
reusability through the development of platform 
independent modules for high-level functionality, but also 
allows for object-oriented hardware drivers and interrupt 
handling. In addition it allows for seamless integration 
with legacy code and supplied software libraries. 
 
Another important aspect of code reusability is 
maintainability. While design documentation and code 
comments are of high importance, existing code is often 
discarded because it is poorly written and 
incomprehensible. Well-written code should be self-
explanatory.  
 
When code is shared among developers, code familiarity 
can be instilled through coding standards and design 
patterns ranging from commenting styles to driver 
interfacing protocols. This can drastically improve the 
understanding and reusability of code.  
 

 
 
After a brief discussion of coding standards, the object-
oriented implementation of C is presented. This is 
followed by design patterns for some common 
functionality in embedded application development. Note 
that a working knowledge of embedded software 
development in ANSI-C and object-oriented 
programming is required. 

2. MODULAR DESIGN 

In accordance with the UML philosophy, good software 
follows a hierarchical architectural design [2]. Through 
hardware abstraction and good interface design, 
application software will never need to access hardware 
directly. Furthermore, through the implementation of 
services and protocol managers, a further layer of 
functional abstraction can be created, allowing 
application software to be completely portable between 
different hardware systems.  
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Common 
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Custom 
drivers 

Hardware 

Figure 1: Layered architecture. 

Drivers are task independent and can be shared among 
similar hardware with different applications. Common 
services and protocol managers can also be shared among 
different systems, independent of hardware and 
applications. This architecture is illustrated in Fig. 1. 
Together, the grey sections produce an operating system.     
Common drivers comprise the software that 
communicates directly with generic hardware. It includes 
code for setting and reading specific address registers and 
handling interrupts. Devices on-board micro-controllers 
also require drivers. While software libraries for such 
devices are usually available, it rarely uses a common 
interface and does not implement any object-oriented 
approach. Fortunately, this code can easily be wrapped in 
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classes. The goal is to compile a library including all 
common drivers and services to be shared among 
systems. The aim is further to implement a common 
driver interface for various different devices. This allows 
for the swapping of hardware and drivers with minimal 
modification of application software, e.g. replacing 
EPROM with FLASH or an UART with LAN. 
 
In most embedded systems, some hardware is application 
specific, e.g. discrete hardware and interrupts or custom 
PLD configurations. Custom drivers are implemented 
here. In such cases, the value of separate application 
software and hardware interfaces lies in the ability to 
upgrade the components  independently. 
 
The hardware independent, application specific code 
forms the application layer. Code in this layer should 
contain no direct interfacing with hardware. However, 
large parts of application specific software can often be 
reused. Typically, code used for communicating between 
processors may be duplicated on the two sides of the link, 
creating a communication protocol. This common code 
can be extracted from the application software and 
included in the library as a common service.  
 
The required drivers and services from the library can be 
combined to form a hardware interface. The hardware 
will require custom configuration to create a hardware 
specific operating system. Through proper design, an 
application independent hardware interface can thus be 
constructed. By making use of common design patterns, 
this interface can be made generic.  This allows the 
application software to be hardware independent. 
Depending on the purpose of the system, the applications 
will however have some minimum functional hardware 
requirements from the operating system.  
 
Embedded systems are often event driven. Certain tasks 
are only executed if specific events occur. External 
interrupts generate the non-deterministic events used to 
trigger the associated tasks. Interrupts are asynchronous 
and may originate from an internal or external source, 
and from hardware or software. These are  all handled by 
the interrupt manager. A scheduler can be used to 
dispatch deterministic repetitive tasks. With the use of a 
single timer, the scheduler can generate multiple events at 
different frequencies, which can be used to trigger 
synchronous tasks. 
 
The notion of foreground vs. background processing is 
frequently used in embedded software design and 
distinguishes between the main execution loop and the 
various event triggered threads. Definition of these 
terminologies differs amongst users and therefore, this 
reference will not be used here.  
 
While it is possible that all processing can be done within 
event-triggered threads, this is not good practice. To 
manage time-critical tasks and task prioritization in 
systems with asynchronously occurring events, interrupt 

triggered threads should be kept as short as possible. 
Only time-critical processing, such as loading values to 
and from hardware interfaces, should be done in these 
routines. The main thread should handle all other non-
critical housekeeping. Fig. 2 illustrates how the main 
thread could execute various tasks and different event 
triggered threads. This ensures that when the processor 
gets temporarily heavily loaded with concurrent 
interrupts, the non-critical tasks will get delayed to when 
processing is less congested.  
 
Furthermore, embedded systems usually have repetitive 
behaviour. After initialization, the main thread typically 
enters into an infinite loop. The loop produces the system 
behaviour, which may be required to change upon 
meeting certain conditions. These conditions could be 
detected through continuous polling or through interrupts. 
In either case, sections of code will need to be included or 
excluded from the loop. It is generally possible to identify 
different modes with distinct behaviour. Complex 
systems may require switching back and forth between 
modes based on internal or external conditions. In 
addition, mode changes often require special treatment 
like the starting and stopping of processes.  
 

 
Figure 2: Main and event triggered threads. 

 
The implementation of these requirements fits neatly into 
the modular design philosophy. Every mode can be 
defined by a class, which contains functions for normal 
behaviour as well as mode transitions. These functions 
can then be appropriately invoked as conditions change.  
 
In an object-oriented language, it is advantageous to let 
all the modes inherit from the same generic mode 
interface. Mode changes can then be managed centrally 
by a mode controller. Generally, there is a great deal of 
code that has to be executed independent of the current 
mode. The mode controller can execute this common 
code by default. 
 
Different instantiated modes can be registered at the 
mode controller. The main thread enters a loop, which 
executes mode behaviour and checks for conditions that 
may require mode changes. Upon detection, it calls the 
appropriate mode transition code and changes the current 
mode. Following this, it continues the loop, executing the 
new mode behaviour. Conditions, which are checked for 
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mode changes, may also depend on the current mode and 
should be derived from a mode diagram in the system 
design.  
 
In embedded applications, the main thread typically 
contains an unconditional loop. Any other loops should 
be deterministic. Tasks such as algorithm computation 
can utilise for loops. When processing serial input 
buffers where data can be processed faster than it can be 
received, completion is guaranteed and a while-loop may 
be used. Using open-ended loops are prohibited. When 
polling for non-deterministic conditions, the possibility 
exists that the processor can get trapped in the loop. One 
option is to implement a time-out counter, limiting the 
repetitions of the loop.  
 
Often deterministic idle loops are implemented to pause 
between consecutive condition testing. This is strongly 
discouraged and for extended time periods it is 
prohibited, wasting useful processing time. As an 
alternative, the start of a waiting state can be time 
stamped and the conditions (including a possible timeout) 
can be polled once on every pass of the loop in the main 
thread. This allows for processing of other tasks while 
waiting.  

3. CODING STANDARDS 

An extremely effective way of improving code 
readability is by setting coding standards. This consists of 
cosmetic rules, token formats, common function 
prototypes and standard code structures [3]. 
 
Whereas code cosmetics give a familiar look-and-feel to 
the code, predefined types and variable name assignment 
formats can help readers anticipate compiler 
interpretations and processor actions. Finally, common 
function prototypes and interface rules like: “Size is 
always defined in bytes”, makes their usage much more 
intuitive. Table 1 contains a list of potential C coding 
standards. These rules can be customized to preferences.  
It is only important that developer alliances will share the 
same rules. 

Table 1: Coding standards. 

Issue Standard Reason 
File 
headers 

predefined templates 
define header filenames 

Ensure inclusion of 
author, use, date etc. 

Marcos highly discouraged Complicates single 
step debugging 

Tabs 4 bank spaces Prevent misalignment 
when changing editors 

Blocks for/if/else/while always 
followed by { in next 
line; code indented 

Prevent assumption of 
code execution. 
Readability 

Case 
clause 

code indented under  
case, end with break 

Prevent unintended 
code execution. 

Assign-
ment 

space before & after =, 
no nested assignments 

Readability 

 

The use of common definitions can drastically improve 
code readability and standardization. However, they 
should be kept simple and limited in number to ensure 
that their definitions are well known to their users. 
Definitions, which are supposed to be shared by all code, 
are declared in a common header file in Sample 1.This 
should be included in other files by default.  

Sample 1: Generic header predef.h 

/* Default predefined types and prototypes */ 
/* Author: M. Neser Version 1.0 */ 
 
#ifndef predef_h 
#define predef_h 
 
#define class typedef struct 
#define vol volatile unsigned char 
#define TASK void (*)(void*) 
#define INTERFACE int (*)(void*, int, int, void*) 
 
typedef enum boolean 
{ 
 FALSE = 0, 
 TRUE  = 1 
} boolean; 
 
#endif 

 
This file demonstrates a simple file header template in its 
first two lines. This is followed by a conditional block 
that ends at the last line. This block is included only if the 
file name is undefined. In this block, the first token 
defines the file name. This scheme prevents the compiler 
from attempting to re-include the definition. All header 
files should implement this scheme. This is followed by a 
set of common definitions which will be clarified on use 
in the next section. Finally, a new type ‘boolean’ is 
defined for general condition assignment. Using this type 
improves readability of arguments. 
 
By following basic naming conventions, tokens can bear 
additional information. The most widely used standard is 
Hungarian notation in which variable names are prefixed 
with key characters signifying their type [4]. A basic list 
of type keys is given in Table 2. This list can be freely 
extended to more types. 

Table 2: Hungarian notation. 

Key Interpretation Description 
c char 8 bit integer 
i integer 16 bit integer 
f float 16 bit real value 
d double 32 bit real value 
b boolean (custom) TRUE = 1, FALSE = 0 
v volatile (custom) volatile unsigned char 
u unsigned modifier (prefix) 
p pointer modifier (prefix) 
a array modifier (prefix) 

 
This notion can be extended beyond variable names and 
other token types can be distinguished through similar 
conventions. Examples of typical C token types and 
possible naming conventions are listed in Table 3. 
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Table 3: Token identification. 

Type Token 
Predef values All caps, words separated by underscore 
Predef types Type appended with _t, _st etc. 
Class names Capital C followed by name, capitalized 

1st letter for every word, no underscore 
Variables Hungarian notation followed by upper 

case 1st letter for every word, no 
underscore 

Methods Capitalized 1st letter for every word,  
no underscore 

 
Appending predefined types with an underscore and a 
postfix is in accordance with standard predefined C types 
like size_t, which is used to create code with target 
dependent variable types. 

4. IMPLEMENTING CLASSES 

The importance of object-oriented programming has been 
stated repeatedly for advanced software design [5], as 
seen in the UML development paradigm. In embedded 
software design, object-oriented programming is 
especially useful for the instantiation of multiple drivers 
for duplicated devices and data channels [6]. 
 
Real-time embedded software, however, holds a unique 
set of challenges for hardware interfacing and interrupt 
handling. While standard C is the programming language 
of choice for embedded systems, it relies on global 
variables and lacks classes and inheritance [7], which 
hinders the object-oriented programming philosophy. 
 
The remainder of the paper describes how a company 
named Kreon Technology has successfully implemented 
the object-oriented philosophy for embedded software 
development with ANSI-C. As far as possible, newly 
introduced conventions attempt to emulate the JavaTM 
syntax and event model [8]. 
 
An object consists of data in a set of member variables as 
well as a set of methods, which is relevant to the data. 
Objects and classes are not a standard part of C, but they 
can be emulated with structures. Methods can be 
implemented with the use of function pointers. 
 
C classes are therefore defined as structures with member 
variables as well as function pointers to all the methods. 
Normally, a constructor function is used to initialise 
member variables after instantiation of an object. In this 
case, the constructor also assigns all other method 
addresses to the object’s function pointers. In effect, this 
results in dynamic method binding. The constructor 
function is named to emulate the JavaTM new operator. 
 
Neither C nor C++ allows common definition and 
declaration of classes in one file as is the case with 
JavaTM. As a result the :: operator for method declaration 
in C++ is emulated with an underscore  [7]. 

Class definitions and declarations are done in separate 
respective header and C files. These files are named 
according to the class names. It is suggested that the file 
containing the main function be named ‘main.c’. This file 
could be made quite generic, instantiating and 
constructing an application class and calling its execution 
method. 
 
Since the methods of a class instance normally require 
access to its related member variables, a pointer to the 
class instance accompanies every function call. This 
pointer is referred to as the this pointer and can be 
accessed from within the method as such. By default 
every method call will pass the this pointer as its first 
parameter. 
 
A device driver provides an interface to hardware through 
input or output functions. Generally, data can be read 
from or written to a device. By standardizing this 
interface, changing hardware e.g. from UART to USB, 
can be done with minimal code changes.  
 
An illustrative device driver class that gives the driver 
interface definition is presented in Sample 2. The 
definition starts with the standard file header, default 
inclusions and header file definition check block. This is 
followed by the definition of two utility structures, the 
context and the device structure. Their functions are 
discussed below.  
 
Following these structures is the actual class definition. 
For every method of the class, a compatible function 
pointer is added to the class definition. This class 
contains one function pointer to a sample method and one 
member variable namely the device structure pointer. In 
practice, the class will contain various function pointers 
and member variables. 
 
The method shown in the sample follows a predefined 
prototype. Read and Write are reserved interfacing 
method names that follow a strict design pattern. It 
extends the conventional C read and write function 
prototypes with buffer pointer, data size and data count 
[7].  The parameter list is prefixed with the this pointer 
and appended with a context structure pointer. These two 
pointers’ types are class dependent. The context structure 
is used to pass any additional information to the methods. 
If no additional information is required, this is replaced 
with a void pointer to be consistent with the pattern.  
 
Following this design pattern, services can be made 
independent of the underlying drivers. Driver methods 
can be dynamically assigned to generic function pointers 
in the services. By passing the driver methods and 
context to the service from an external source, the 
services can interface with the drivers generically. 
 
The driver uses the device structure pointer to access the 
device hardware registers. By initializing it with the 
devices offset in memory, the structure forms a memory 
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map to all the devices’ mapped registers. Device structure 
members are defined as volatile.  
 
The class definition is followed by the constructor 
prototype. This is the only method of the class that is 
defined outside of the class definition and can be 
accessed directly. The device offset is passed to the driver 
as a parameter, making the driver independent of the 
system memory map. 
 
Sample 3 gives an implementation template of the driver. 
The standard file header is followed by inclusion of the 
header file. The methods defined in the class definition 
are then implemented. In this case, the function names 
emulate the C++ syntax [8]. Finally, the class constructor 
implements all once-off initialization. Most importantly, 
the function pointers need to be initialized to the 
appropriate methods. Any further object initialization is 
also done here. A parameter, which holds the memory 

Sample 2: Header of device.h 

/* Demo device driver interface definition */ 
/* Author: M. Neser Version 1.0 */ 
 
#include “predef.h” 
 
#ifndef driver_h 
#define driver_h 
 
/* additional info for read/write function calls */ 
typedef struct  
{ 
 unsigned int uiOffset; 
} ctx_st; 
 
/* map device with config byte and 8 data bytes */ 
typedef struct 
{ 
 vol vConfig; 
 vol avData[8]; 
} dev_st; 
 
/* device driver class definition */ 
class CDriver 
{ 
 /* function pointer prototypes */ 
 size_t (*Write)(struct CDriver *this, void *pBuffer,  
  size_t uiSize, size_t uiCount,  
  ctx_st *stContext); 
 
 /* device hardware pointer */ 
 dev_st *pstDev; 
} CDriver; 
 
/* class constructor prototype */ 
boolean new_CDriver(CDriver *this, dev_st *pstDev); 
 
#endif /* driver_h */ 

 
offset of the device, is typically passed. Anything that 
might be required to be reinitialized should rather be done 
in a separate setup method. 
 
Both internal and external devices are commonly used to 
generate interrupts, which are used to invoke associated 
interrupt service routines. 
 

In the object-oriented paradigm, using device driver 
classes, event handler methods are implemented to handle 
associated interrupts. These method calls require passing 
the this pointer. This is especially important to 
distinguish between multiple driver instances, e.g. for 
duplicate UARTs, where the same method is called for 
different devices.  
 
To handle this requirement in a modular fashion, an 
interrupt manager is introduced, which forms part of the 
set of operating system services.  
 

5. ADVANCED SERVICES 

Four services are proposed in this section. The first is the 
interrupt manager mentioned in the previous paragraph. 
This service is processor specific and is of great 
importance for real-time systems. This is followed by two  

Sample 3: Implementation of driver.c 

/* Demo device driver implementation */ 
/* Author: M. Neser Version 1.0 */ 
 
#include “driver.h” 
 
/* Write method implementation */ 
size_t CDriver_Write( CDriver *this, void *pBuffer,  
  size_t uiSize, size_t uiCount,  
  ctx_st *pstContext) 
{ 
 /* implementation... */ 
 return uiCount; 
} 
 
/* constructor implementation */ 
boolean new_CDriver(CDriver *this, dev_st *pstDev) 
{ 
 /* method binding */ 
 this->Write = CDriver_write; 
 
 /* member initialization */ 
 this->pstDev = pstDev; 
 
 return TRUE; 
} 

 
processor independent services, the scheduler and the 
mode controller, as mentioned in Section 2. Finally, a 
thread manager is proposed for creating a cooperative 
multi-threading operating system. 
 
The interrupt manager is responsible for calling the 
appropriate event handing methods on the occurrence of 
interrupts. The manager should contain interrupt driven 
service routines for all the interrupt vectors and must be 
able to uniquely distinguish between the sources of 
multiplexed interrupts. 
 
Borrowing from the JavaTM event model, event listeners 
can be registered in association with different interrupt 
sources [8]. Event listeners consist of pointers to the 
event handling objects and methods. On identification of 
an interrupt source, the interrupt manager calls the 
corresponding registered method. This allows for 
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multiple instances of the same driver to be declared and 
used independently for duplicate devices. 
 
Services are built on the concept of registering event 
listeners and tasks. Objects and methods can be generally 
linked to services, creating an independent functional 
layer. As is the case with JavaTM, a registration method is 
used to pass the event listener parameters to the services. 
Event handling methods have to be cast to a predefined 
method pointer prototype, which can be used by the 
interrupt manager.  
 
One important function of an operating system is that of 
task scheduling. Often repetitive tasks such as status 
message generation and sampling need to be scheduled at 
fixed intervals. A scheduler can be used to dispatch tasks 
at different frequencies using a single timer.  
 
The scheduler is invoked at the maximum required 
frequency for scheduled events. Tasks are registered to 
the scheduler with their respective periods. A registration 
method is used to pass all the required parameters. 
Counters are assigned to the tasks and decremented every 
time the scheduler is invoked.  When a counter reaches 
zero, the scheduler calls the associated task method.  
 
A mode controller can be implemented as an independent 
service in a similar way. By implementing every mode's 
methods in a separate class, each mode can be registered 
at the mode controller in a common manner. The mode 
controller typically enters an unconditional loop where it 
checks for mode change requests and accordingly, calls 
the mode’s processing method or the requested mode’s 
entry method. 
 
Incorporating pre-emptive multi-threading in an operating 
system is an ambitious task. Although it might simplify 
software design, it is not essential for producing efficient 
and well-written code.  That said, it is possible to realise 
cooperative multi-threading in the object-oriented 
paradigm using thread objects. 
 
Each thread object contains its own software stack and a 
method to instigate a context switch. This method 
suspends the calling thread and resumes another. Threads 
are registered at a kernel class during construction, which 
is responsible for context switching. This typically 
involves intricate processor specific machine code, which 
is outside the scope of this paper. Pre-emptive multi-
threading can be made possible by invoking context 
switches from scheduled time-slicing events [9]. 
 
As depicted in Fig. 1, a final notion is to combine all the 
implemented services and drivers into a system class to 
create a complete operating system. The system class is 
responsible for the interconnected construction and 
initialization of all these components. Sample 4 
demonstrates how a timer and different services are 
constructed and a task is set up.  
 

Sample 4: Code from system.c 

void new_CSystem(CSystem *this) 
{ 
 new_CInterrupt(&this->interrupt); 
 new_CScheduler(&this->scheduler); 
 new_CTimer0(&this->aTimer[0], (timer_dev*),TIMER0); 
 
 this->timer.Setup(&this->aTimer[0],1000); 
 
 this->interrupt.RegTask(&this->interrupt, 
 &this->scheduler,  
 (TASK)(this->scheduler.Process), 
 TIMER0_INT) 

6. CONCLUDING REMARKS 

It is good object-oriented practice to restrict access to 
member variables from outside an object. This is 
especially true for changing values – only the object itself 
should be allowed to modify its variables. To update 
member variables of another object, new values should be 
passed via access methods of that object, allowing the 
object to handle any potential consequences of the 
change.  
 
GetVariable and SetVariable are common design 
pattern names for such access methods. For passing larger 
structures, the Read and Write design patterns can be 
utilised [8]. 
 
Various other regulations may also be implemented to 
improve determinism in the execution of software. These 
may range from enforcing single function exit points for 
improving traceability, to the prohibiting of dynamic 
memory allocation; depending on the implied burden on 
the CPU and RAM (dynamic memory allocation is 
considered a memory leakage risk and is therefore, not 
recommended in application specific systems). 
 
The paper shows that the object-oriented philosophy can 
be followed in ANSI-C for all levels of embedded 
software development. Furthermore, the overheads 
accompanying this approach involve limited machine 
instructions, one additional pointer per function call on 
the stack and one pointer in memory for every object 
method.  
 
The cost of software development for embedded systems 
often overshadows all other costs [2]. Since object-
oriented programming can greatly reduce development 
time, the cost savings from implementing this approach 
usually outweighs the cost on resources, even if it implies 
the utilisation of more expensive hardware. 
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