
Vol.100(4) December 2009SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS90

OBJECT-ORIENTED EMBEDDED C

M. Neser* and G. van Schoor*

* School of Electrical, Electronic and Computer Engineering, North-West University, South Africa,
Email: mneser@email.com / George.VanSchoor@nwu.ac.za

Abstract: This paper presents an object-oriented implementation of ANSI-C for embedded systems.
It offers practical guidelines for producing generic software libraries and portable applications. While
various object-oriented implementations of C is available, the aim is to impress a culture of producing
safe, robust embedded software which can easily be shared and integrated amongst developers and
systems. Starting from coding standards, a design philosophy is proposed for creating reusable
drivers, services, applications and finally, a complete real-time operating system.

Key words: modular design, coding standards, real-time, operating system

1. INTRODUCTION

Effective software engineering requires the ability to
rapidly produce and integrate robust and secure code. The
key to good software development lies in modular design,
testing and code reuse. This is strongly supported by the
Unified Modelling Language (UML) design philosophy
[1]. By encapsulating functionality with clear interfaces,
modules can be identified which can be re-implemented
within single applications or across projects.

In the object-oriented environment, modules are typically
defined as classes consisting of attributes and behaviours
in the form of member variables and methods. In
embedded systems, object-oriented design is frequently
hampered by intensive platform dependent hardware
interfacing and real-time performance requirements. In
addition, C, which is still the most popular programming
language for embedded applications, is not inherently
object-oriented.

An object-oriented implementation of ANSI-C is
proposed in this paper, which follows the UML approach
for embedded real-time applications. It promotes code
reusability through the development of platform
independent modules for high-level functionality, but also
allows for object-oriented hardware drivers and interrupt
handling. In addition it allows for seamless integration
with legacy code and supplied software libraries.

Another important aspect of code reusability is
maintainability. While design documentation and code
comments are of high importance, existing code is often
discarded because it is poorly written and
incomprehensible. Well-written code should be self-
explanatory.

When code is shared among developers, code familiarity
can be instilled through coding standards and design
patterns ranging from commenting styles to driver
interfacing protocols. This can drastically improve the
understanding and reusability of code.

After a brief discussion of coding standards, the object-
oriented implementation of C is presented. This is
followed by design patterns for some common
functionality in embedded application development. Note
that a working knowledge of embedded software
development in ANSI-C and object-oriented
programming is required.

2. MODULAR DESIGN

In accordance with the UML philosophy, good software
follows a hierarchical architectural design [2]. Through
hardware abstraction and good interface design,
application software will never need to access hardware
directly. Furthermore, through the implementation of
services and protocol managers, a further layer of
functional abstraction can be created, allowing
application software to be completely portable between
different hardware systems.

Application

Services

Common
drivers

Custom
drivers

Hardware

Figure 1: Layered architecture.

Drivers are task independent and can be shared among
similar hardware with different applications. Common
services and protocol managers can also be shared among
different systems, independent of hardware and
applications. This architecture is illustrated in Fig. 1.
Together, the grey sections produce an operating system.
Common drivers comprise the software that
communicates directly with generic hardware. It includes
code for setting and reading specific address registers and
handling interrupts. Devices on-board micro-controllers
also require drivers. While software libraries for such
devices are usually available, it rarely uses a common
interface and does not implement any object-oriented
approach. Fortunately, this code can easily be wrapped in

Vol.100(4) December 2009 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 91

classes. The goal is to compile a library including all
common drivers and services to be shared among
systems. The aim is further to implement a common
driver interface for various different devices. This allows
for the swapping of hardware and drivers with minimal
modification of application software, e.g. replacing
EPROM with FLASH or an UART with LAN.

In most embedded systems, some hardware is application
specific, e.g. discrete hardware and interrupts or custom
PLD configurations. Custom drivers are implemented
here. In such cases, the value of separate application
software and hardware interfaces lies in the ability to
upgrade the components independently.

The hardware independent, application specific code
forms the application layer. Code in this layer should
contain no direct interfacing with hardware. However,
large parts of application specific software can often be
reused. Typically, code used for communicating between
processors may be duplicated on the two sides of the link,
creating a communication protocol. This common code
can be extracted from the application software and
included in the library as a common service.

The required drivers and services from the library can be
combined to form a hardware interface. The hardware
will require custom configuration to create a hardware
specific operating system. Through proper design, an
application independent hardware interface can thus be
constructed. By making use of common design patterns,
this interface can be made generic. This allows the
application software to be hardware independent.
Depending on the purpose of the system, the applications
will however have some minimum functional hardware
requirements from the operating system.

Embedded systems are often event driven. Certain tasks
are only executed if specific events occur. External
interrupts generate the non-deterministic events used to
trigger the associated tasks. Interrupts are asynchronous
and may originate from an internal or external source,
and from hardware or software. These are all handled by
the interrupt manager. A scheduler can be used to
dispatch deterministic repetitive tasks. With the use of a
single timer, the scheduler can generate multiple events at
different frequencies, which can be used to trigger
synchronous tasks.

The notion of foreground vs. background processing is
frequently used in embedded software design and
distinguishes between the main execution loop and the
various event triggered threads. Definition of these
terminologies differs amongst users and therefore, this
reference will not be used here.

While it is possible that all processing can be done within
event-triggered threads, this is not good practice. To
manage time-critical tasks and task prioritization in
systems with asynchronously occurring events, interrupt

triggered threads should be kept as short as possible.
Only time-critical processing, such as loading values to
and from hardware interfaces, should be done in these
routines. The main thread should handle all other non-
critical housekeeping. Fig. 2 illustrates how the main
thread could execute various tasks and different event
triggered threads. This ensures that when the processor
gets temporarily heavily loaded with concurrent
interrupts, the non-critical tasks will get delayed to when
processing is less congested.

Furthermore, embedded systems usually have repetitive
behaviour. After initialization, the main thread typically
enters into an infinite loop. The loop produces the system
behaviour, which may be required to change upon
meeting certain conditions. These conditions could be
detected through continuous polling or through interrupts.
In either case, sections of code will need to be included or
excluded from the loop. It is generally possible to identify
different modes with distinct behaviour. Complex
systems may require switching back and forth between
modes based on internal or external conditions. In
addition, mode changes often require special treatment
like the starting and stopping of processes.

Figure 2: Main and event triggered threads.

The implementation of these requirements fits neatly into
the modular design philosophy. Every mode can be
defined by a class, which contains functions for normal
behaviour as well as mode transitions. These functions
can then be appropriately invoked as conditions change.

In an object-oriented language, it is advantageous to let
all the modes inherit from the same generic mode
interface. Mode changes can then be managed centrally
by a mode controller. Generally, there is a great deal of
code that has to be executed independent of the current
mode. The mode controller can execute this common
code by default.

Different instantiated modes can be registered at the
mode controller. The main thread enters a loop, which
executes mode behaviour and checks for conditions that
may require mode changes. Upon detection, it calls the
appropriate mode transition code and changes the current
mode. Following this, it continues the loop, executing the
new mode behaviour. Conditions, which are checked for

Vol.100(4) December 2009SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS92

mode changes, may also depend on the current mode and
should be derived from a mode diagram in the system
design.

In embedded applications, the main thread typically
contains an unconditional loop. Any other loops should
be deterministic. Tasks such as algorithm computation
can utilise for loops. When processing serial input
buffers where data can be processed faster than it can be
received, completion is guaranteed and a while-loop may
be used. Using open-ended loops are prohibited. When
polling for non-deterministic conditions, the possibility
exists that the processor can get trapped in the loop. One
option is to implement a time-out counter, limiting the
repetitions of the loop.

Often deterministic idle loops are implemented to pause
between consecutive condition testing. This is strongly
discouraged and for extended time periods it is
prohibited, wasting useful processing time. As an
alternative, the start of a waiting state can be time
stamped and the conditions (including a possible timeout)
can be polled once on every pass of the loop in the main
thread. This allows for processing of other tasks while
waiting.

3. CODING STANDARDS

An extremely effective way of improving code
readability is by setting coding standards. This consists of
cosmetic rules, token formats, common function
prototypes and standard code structures [3].

Whereas code cosmetics give a familiar look-and-feel to
the code, predefined types and variable name assignment
formats can help readers anticipate compiler
interpretations and processor actions. Finally, common
function prototypes and interface rules like: “Size is
always defined in bytes”, makes their usage much more
intuitive. Table 1 contains a list of potential C coding
standards. These rules can be customized to preferences.
It is only important that developer alliances will share the
same rules.

Table 1: Coding standards.

Issue Standard Reason
File
headers

predefined templates
define header filenames

Ensure inclusion of
author, use, date etc.

Marcos highly discouraged Complicates single
step debugging

Tabs 4 bank spaces Prevent misalignment
when changing editors

Blocks for/if/else/while always
followed by { in next
line; code indented

Prevent assumption of
code execution.
Readability

Case
clause

code indented under
case, end with break

Prevent unintended
code execution.

Assign-
ment

space before & after =,
no nested assignments

Readability

The use of common definitions can drastically improve
code readability and standardization. However, they
should be kept simple and limited in number to ensure
that their definitions are well known to their users.
Definitions, which are supposed to be shared by all code,
are declared in a common header file in Sample 1.This
should be included in other files by default.

Sample 1: Generic header predef.h

/* Default predefined types and prototypes */
/* Author: M. Neser Version 1.0 */

#ifndef predef_h
#define predef_h

#define class typedef struct
#define vol volatile unsigned char
#define TASK void (*)(void*)
#define INTERFACE int (*)(void*, int, int, void*)

typedef enum boolean
{
 FALSE = 0,
 TRUE = 1
} boolean;

#endif

This file demonstrates a simple file header template in its
first two lines. This is followed by a conditional block
that ends at the last line. This block is included only if the
file name is undefined. In this block, the first token
defines the file name. This scheme prevents the compiler
from attempting to re-include the definition. All header
files should implement this scheme. This is followed by a
set of common definitions which will be clarified on use
in the next section. Finally, a new type ‘boolean’ is
defined for general condition assignment. Using this type
improves readability of arguments.

By following basic naming conventions, tokens can bear
additional information. The most widely used standard is
Hungarian notation in which variable names are prefixed
with key characters signifying their type [4]. A basic list
of type keys is given in Table 2. This list can be freely
extended to more types.

Table 2: Hungarian notation.

Key Interpretation Description
c char 8 bit integer
i integer 16 bit integer
f float 16 bit real value
d double 32 bit real value
b boolean (custom) TRUE = 1, FALSE = 0
v volatile (custom) volatile unsigned char
u unsigned modifier (prefix)
p pointer modifier (prefix)
a array modifier (prefix)

This notion can be extended beyond variable names and
other token types can be distinguished through similar
conventions. Examples of typical C token types and
possible naming conventions are listed in Table 3.

Vol.100(4) December 2009 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 93

Table 3: Token identification.

Type Token
Predef values All caps, words separated by underscore
Predef types Type appended with _t, _st etc.
Class names Capital C followed by name, capitalized

1st letter for every word, no underscore
Variables Hungarian notation followed by upper

case 1st letter for every word, no
underscore

Methods Capitalized 1st letter for every word,
no underscore

Appending predefined types with an underscore and a
postfix is in accordance with standard predefined C types
like size_t, which is used to create code with target
dependent variable types.

4. IMPLEMENTING CLASSES

The importance of object-oriented programming has been
stated repeatedly for advanced software design [5], as
seen in the UML development paradigm. In embedded
software design, object-oriented programming is
especially useful for the instantiation of multiple drivers
for duplicated devices and data channels [6].

Real-time embedded software, however, holds a unique
set of challenges for hardware interfacing and interrupt
handling. While standard C is the programming language
of choice for embedded systems, it relies on global
variables and lacks classes and inheritance [7], which
hinders the object-oriented programming philosophy.

The remainder of the paper describes how a company
named Kreon Technology has successfully implemented
the object-oriented philosophy for embedded software
development with ANSI-C. As far as possible, newly
introduced conventions attempt to emulate the JavaTM
syntax and event model [8].

An object consists of data in a set of member variables as
well as a set of methods, which is relevant to the data.
Objects and classes are not a standard part of C, but they
can be emulated with structures. Methods can be
implemented with the use of function pointers.

C classes are therefore defined as structures with member
variables as well as function pointers to all the methods.
Normally, a constructor function is used to initialise
member variables after instantiation of an object. In this
case, the constructor also assigns all other method
addresses to the object’s function pointers. In effect, this
results in dynamic method binding. The constructor
function is named to emulate the JavaTM new operator.

Neither C nor C++ allows common definition and
declaration of classes in one file as is the case with
JavaTM. As a result the :: operator for method declaration
in C++ is emulated with an underscore [7].

Class definitions and declarations are done in separate
respective header and C files. These files are named
according to the class names. It is suggested that the file
containing the main function be named ‘main.c’. This file
could be made quite generic, instantiating and
constructing an application class and calling its execution
method.

Since the methods of a class instance normally require
access to its related member variables, a pointer to the
class instance accompanies every function call. This
pointer is referred to as the this pointer and can be
accessed from within the method as such. By default
every method call will pass the this pointer as its first
parameter.

A device driver provides an interface to hardware through
input or output functions. Generally, data can be read
from or written to a device. By standardizing this
interface, changing hardware e.g. from UART to USB,
can be done with minimal code changes.

An illustrative device driver class that gives the driver
interface definition is presented in Sample 2. The
definition starts with the standard file header, default
inclusions and header file definition check block. This is
followed by the definition of two utility structures, the
context and the device structure. Their functions are
discussed below.

Following these structures is the actual class definition.
For every method of the class, a compatible function
pointer is added to the class definition. This class
contains one function pointer to a sample method and one
member variable namely the device structure pointer. In
practice, the class will contain various function pointers
and member variables.

The method shown in the sample follows a predefined
prototype. Read and Write are reserved interfacing
method names that follow a strict design pattern. It
extends the conventional C read and write function
prototypes with buffer pointer, data size and data count
[7]. The parameter list is prefixed with the this pointer
and appended with a context structure pointer. These two
pointers’ types are class dependent. The context structure
is used to pass any additional information to the methods.
If no additional information is required, this is replaced
with a void pointer to be consistent with the pattern.

Following this design pattern, services can be made
independent of the underlying drivers. Driver methods
can be dynamically assigned to generic function pointers
in the services. By passing the driver methods and
context to the service from an external source, the
services can interface with the drivers generically.

The driver uses the device structure pointer to access the
device hardware registers. By initializing it with the
devices offset in memory, the structure forms a memory

Vol.100(4) December 2009SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS94

map to all the devices’ mapped registers. Device structure
members are defined as volatile.

The class definition is followed by the constructor
prototype. This is the only method of the class that is
defined outside of the class definition and can be
accessed directly. The device offset is passed to the driver
as a parameter, making the driver independent of the
system memory map.

Sample 3 gives an implementation template of the driver.
The standard file header is followed by inclusion of the
header file. The methods defined in the class definition
are then implemented. In this case, the function names
emulate the C++ syntax [8]. Finally, the class constructor
implements all once-off initialization. Most importantly,
the function pointers need to be initialized to the
appropriate methods. Any further object initialization is
also done here. A parameter, which holds the memory

Sample 2: Header of device.h

/* Demo device driver interface definition */
/* Author: M. Neser Version 1.0 */

#include “predef.h”

#ifndef driver_h
#define driver_h

/* additional info for read/write function calls */
typedef struct
{
 unsigned int uiOffset;
} ctx_st;

/* map device with config byte and 8 data bytes */
typedef struct
{
 vol vConfig;
 vol avData[8];
} dev_st;

/* device driver class definition */
class CDriver
{
 /* function pointer prototypes */
 size_t (*Write)(struct CDriver *this, void *pBuffer,
 size_t uiSize, size_t uiCount,
 ctx_st *stContext);

 /* device hardware pointer */
 dev_st *pstDev;
} CDriver;

/* class constructor prototype */
boolean new_CDriver(CDriver *this, dev_st *pstDev);

#endif /* driver_h */

offset of the device, is typically passed. Anything that
might be required to be reinitialized should rather be done
in a separate setup method.

Both internal and external devices are commonly used to
generate interrupts, which are used to invoke associated
interrupt service routines.

In the object-oriented paradigm, using device driver
classes, event handler methods are implemented to handle
associated interrupts. These method calls require passing
the this pointer. This is especially important to
distinguish between multiple driver instances, e.g. for
duplicate UARTs, where the same method is called for
different devices.

To handle this requirement in a modular fashion, an
interrupt manager is introduced, which forms part of the
set of operating system services.

5. ADVANCED SERVICES

Four services are proposed in this section. The first is the
interrupt manager mentioned in the previous paragraph.
This service is processor specific and is of great
importance for real-time systems. This is followed by two

Sample 3: Implementation of driver.c

/* Demo device driver implementation */
/* Author: M. Neser Version 1.0 */

#include “driver.h”

/* Write method implementation */
size_t CDriver_Write(CDriver *this, void *pBuffer,
 size_t uiSize, size_t uiCount,
 ctx_st *pstContext)
{
 /* implementation... */
 return uiCount;
}

/* constructor implementation */
boolean new_CDriver(CDriver *this, dev_st *pstDev)
{
 /* method binding */
 this->Write = CDriver_write;

 /* member initialization */
 this->pstDev = pstDev;

 return TRUE;
}

processor independent services, the scheduler and the
mode controller, as mentioned in Section 2. Finally, a
thread manager is proposed for creating a cooperative
multi-threading operating system.

The interrupt manager is responsible for calling the
appropriate event handing methods on the occurrence of
interrupts. The manager should contain interrupt driven
service routines for all the interrupt vectors and must be
able to uniquely distinguish between the sources of
multiplexed interrupts.

Borrowing from the JavaTM event model, event listeners
can be registered in association with different interrupt
sources [8]. Event listeners consist of pointers to the
event handling objects and methods. On identification of
an interrupt source, the interrupt manager calls the
corresponding registered method. This allows for

Vol.100(4) December 2009 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 95

multiple instances of the same driver to be declared and
used independently for duplicate devices.

Services are built on the concept of registering event
listeners and tasks. Objects and methods can be generally
linked to services, creating an independent functional
layer. As is the case with JavaTM, a registration method is
used to pass the event listener parameters to the services.
Event handling methods have to be cast to a predefined
method pointer prototype, which can be used by the
interrupt manager.

One important function of an operating system is that of
task scheduling. Often repetitive tasks such as status
message generation and sampling need to be scheduled at
fixed intervals. A scheduler can be used to dispatch tasks
at different frequencies using a single timer.

The scheduler is invoked at the maximum required
frequency for scheduled events. Tasks are registered to
the scheduler with their respective periods. A registration
method is used to pass all the required parameters.
Counters are assigned to the tasks and decremented every
time the scheduler is invoked. When a counter reaches
zero, the scheduler calls the associated task method.

A mode controller can be implemented as an independent
service in a similar way. By implementing every mode's
methods in a separate class, each mode can be registered
at the mode controller in a common manner. The mode
controller typically enters an unconditional loop where it
checks for mode change requests and accordingly, calls
the mode’s processing method or the requested mode’s
entry method.

Incorporating pre-emptive multi-threading in an operating
system is an ambitious task. Although it might simplify
software design, it is not essential for producing efficient
and well-written code. That said, it is possible to realise
cooperative multi-threading in the object-oriented
paradigm using thread objects.

Each thread object contains its own software stack and a
method to instigate a context switch. This method
suspends the calling thread and resumes another. Threads
are registered at a kernel class during construction, which
is responsible for context switching. This typically
involves intricate processor specific machine code, which
is outside the scope of this paper. Pre-emptive multi-
threading can be made possible by invoking context
switches from scheduled time-slicing events [9].

As depicted in Fig. 1, a final notion is to combine all the
implemented services and drivers into a system class to
create a complete operating system. The system class is
responsible for the interconnected construction and
initialization of all these components. Sample 4
demonstrates how a timer and different services are
constructed and a task is set up.

Sample 4: Code from system.c

void new_CSystem(CSystem *this)
{
 new_CInterrupt(&this->interrupt);
 new_CScheduler(&this->scheduler);
 new_CTimer0(&this->aTimer[0], (timer_dev*),TIMER0);

 this->timer.Setup(&this->aTimer[0],1000);

 this->interrupt.RegTask(&this->interrupt,
 &this->scheduler,
 (TASK)(this->scheduler.Process),
 TIMER0_INT)

6. CONCLUDING REMARKS

It is good object-oriented practice to restrict access to
member variables from outside an object. This is
especially true for changing values – only the object itself
should be allowed to modify its variables. To update
member variables of another object, new values should be
passed via access methods of that object, allowing the
object to handle any potential consequences of the
change.

GetVariable and SetVariable are common design
pattern names for such access methods. For passing larger
structures, the Read and Write design patterns can be
utilised [8].

Various other regulations may also be implemented to
improve determinism in the execution of software. These
may range from enforcing single function exit points for
improving traceability, to the prohibiting of dynamic
memory allocation; depending on the implied burden on
the CPU and RAM (dynamic memory allocation is
considered a memory leakage risk and is therefore, not
recommended in application specific systems).

The paper shows that the object-oriented philosophy can
be followed in ANSI-C for all levels of embedded
software development. Furthermore, the overheads
accompanying this approach involve limited machine
instructions, one additional pointer per function call on
the stack and one pointer in memory for every object
method.

The cost of software development for embedded systems
often overshadows all other costs [2]. Since object-
oriented programming can greatly reduce development
time, the cost savings from implementing this approach
usually outweighs the cost on resources, even if it implies
the utilisation of more expensive hardware.

7. ACKNOWLEDGEMENTS

The authors would like to thank Kreon Technology Ltd.
for its support and in particular, Mr. L. van Tonder
(leonvt@kreon.co.za) for his contribution to the standards
proposed in this paper.

Vol.100(4) December 2009SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS96

8. REFERENCES

[1] B.P. Douglass: “Real Time UML Workshop for
Embedded Systems”, Newnes, 2006

[2] J.G. Ganssel: “The Art of Designing Embedded
Systems, 2nd edition”, Newnes, 2008

[3] S.R. Schach: “Object-oriented and classical software
engineering, 7th edition”, McGraw-Hill Companies,
Inc., 2006

[4] F. Kuester and D. Wiley, “Software Development
and Coding Standards”,
vis.eng.uci.edu/standards/pdf/codingstandards.pdf,
23 October 2006

[5] A.T. Schreiner: “Object-oriented Programming with
ANSI-C”, Hollage, 1993

[6] S. Bhakthavatsalam and S.H. Edwards, “Applying
object-oriented techniques in embedded software
design”, Proceedings of the CPES 2002 Power
Electronics Seminar and NSF/Industry Annual
Review, 2002

[7] B. Bramer and S. Bramer: “C++ for Engineers”,
Butterworth-Heinemann, 2001

[8] H.M. Deitel and P.J. Deitel: “Java How to Program,
7th edition”, Prentice Hall PTR, 2007

[9] J.J. Labrosse: “MicroC OS II: The Real-Time
Kernel, 2nd edition”, Newnes, 2002

