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Abstract: This paper presents the system identification and design of a neural network based
Proportional, Integral and Derivative (PID) controller for a two degree of freedom (2DOF), quarter-car
active suspension system. The controller design consists of a PID controller in a feedback loop and a
neural network feedforward controller for the suspension travel to improve the vehicle ride comfort and
handling quality. Nonlinear dynamics of the servo-hydraulic actuator is incorporated in the suspension
model. A SISO neural network (NN) model was developed using the input-output data set obtained
from the mathematical model simulation. Levenberg-Marquardt algorithm was used to train the NN
model. The NN model achieved fitness values of 99.98%, 99.98% and 99.96% for sigmoidnet, wavenet
and neuralnet neural network structures respectively. The proposed controller was compared with a
constant gain PID controller in a suspension travel setpoint tracking in the presence of a deterministic
road disturbance. The NN-based PID controller showed better performances in terms of rise times and
overshoots.

Key words: Active vehicle suspension, PID, Neural network feedforward control, Servo-hydraulic
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1. INTRODUCTION

The design of vehicle suspension is a multidisciplinary
challenge that requires compromise between complex and
conflicting objectives in the face of disturbance inputs.
These objectives includes: good ride comfort, good road
handling, and good road holding qualities within an
acceptable suspension travel range [1–3]. It is difficult
to simultaneously satisfy all the design requirements
for active vehicle suspension system (AVSS). Hence, a
trade-off becomes necessary. Suspension travel is one
of the readily measurable signal that makes the AVSS
design and analysis realistic, especially within a feedback
structure [4, 5].

AVSS control problem is a disturbance rejection problem,
where the road roughness profile constitutes the external
disturbance [3, 6]. Passive vehicle suspension remains the
most popular choice for vibrations attenuation because of
its simplicity and low cost. However, AVSS is the most
feasible option due to its better system static stability and
performance at low frequencies [3].

Numerous papers have highlighted the relative merits
of semi and fully active systems [7–10]. Hrovat [6] gives
a survey of applications of optimal control techniques for
different types of car models, such as quarter-car, half-car,
and full-car. Most of the numerical and experimental

Copyright c©2010 SACAM: This is an extended version of of the paper presented at the 7th South African Conference on Computational and
Applied Mechanics (SACAM10), 10 - 13 January, 2010, University of Pretoria, Pretoria, South Africa.

results failed to highlight the accompanying AVSS design
challenges like measurement and actuator dynamic
complications or the varying operating conditions of the
vehicle [3, 11, 13, 14].

Controller designs based on complex multi-objective
combinations like in [5] demonstrated good performance
and robustness prospects. However, it is required that
all the state variables be measured. This can result in a
difficult to solve non-convex optimization problem.

AVSS controller designs based on linear parameter
varying (LPV) control approach have been extensively
applied to nonlinear models with considerations for
actuator dynamics [15, 16]. However, LPV theory can
only handle measurable and bounded nonlinearities [17].
LPV design is also one of the fixed-gain strategies that
are designed to be optimal for nominal parameter set and
specific operating condition.

The PID control is a generic control loop feedback
mechanism, that remains the most industrially applied
controller because of its simple structure, and the
success of the Ziegler-Nichols tuning algorithms [18, 19].
Moreover, despite the straight forward Ziegler-Nichols
tuning method, fine tuning of the constant gains is often
done intuitively.
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Previous works [11, 12] have shown that PID control
possesses good prospects in terms of performance despite
its disadvantages in terms of robustness, linearity and high
loop gains [22–25]. This motivates for the augmentation
of the PID controllers with genetic algorithm (GA) and
fuzzy logic [26, 27]. The use of several evolutionary
algorithms (EA) like the GA, particle swarm optimization
(PSO) and differential evolution (DE) to obtain optimum
PID gains has been reported in [19].

PID controller is used in this work in two forms;
firstly, as a benchmark to evaluate the performance of
the neural network based PID feedforward controller
(PIDNN) designed for the AVSS. Secondly, as PID based
controller with an overlay of NN inverse model in the
feedforward mode.

It is customary in control design to use feedback as
a means to stabilize unstable systems and to cut down the
influence of disturbance inputs and model innacuracies.
Feedforward control is known to enhance reference
tracking in control designs. Control designs where
feedback is used for reference tracking are usually
sensitive to noise especially in systems lacking in robust
properties [22].

Hagan and Demuth [28] and Cao et al. [29] highlighted
various adaptive control properties of intelligent control
techniques like NN, fuzzy logic, genetic algorithm and
sliding mode control. NN have found wide applications
in the field of control systems design because of their
ability to approximate arbitrary nonlinear mapping and
their highly parallel structure which allows parallel
implementation, thus making it more fault-tolerant than
the conventional schemes. NN also have the ability
to learn and adapt on-line, and good application in
multivariable systems [29–31].

The objective of system identification is to infer an
approximate model of a dynamic system from its input
- output data. It is desirable to seek a model with the
closest representation possible especially when the system
in question is nonlinear as is the case in this work.
Application of NN and other intelligent techniques like
fuzzy logic and genetic algorithm in system identification
of nonlinear systems has been on the rise in the past two
decades because of their capacity to overcome limitations
encountered by the conventional methods [25, 32]

Neural network feedforward control is useful in optimizing
many control problems especially in closed loop cases
with stability properties. Steady-state feedforward control
is not suitable for unstable systems since the control
input is normally expected to be zero in steady-state
systems [22].

This work aims to improve the reference tracking of
the PID controller designed for the AVSS with a NN
inverse model overlay in the feedforward mode. The
achievement of good reference tracking through the use

of feedback is usually accompanied by high sensitivity
to noise. Thus in a situation where good controller
performance has been achieved using feedback control, it
is desirable to provide a guarantee for reduced sensitivity
to noise through the addition of a suitable control
technique in the feedforward mode [22].

The paper is organised as follows: The 2DOF, quarter-car
AVSS model is described in Section 2. Section 3 describes
the performance specifications, system identification
process and controller design. Numerical simulation and
discussion of results are presented in Section 4 before
concluding the paper in Section 5.

2. SYSTEM MODELLING

2.1 Physical Modelling

The 2DOF, quarter-car AVSS is modelled as a dynamic
system that consists of sprung mass ms, and unsprung mass
mu. The masses are interconnected by nonlinear spring ks,
damper bs and hydraulic actuator F , as shown in Figure 1,
and kt is the spring constant due to the compressibility of
the pneumatic tyre. The vertical displacement of the car

Figure 1: Simplified quarter car model

body, wheel and the road disturbance are represented by
x1, x2 and w respectively. The hydraulic actuator force
F is applied between the sprung and unsprung masses.
The relative displacement between the vehicle body and
the wheel (x2 − x1), represents the suspension travel and
the relative displacement between the wheel and the road
(x2 −w), characterizes the road holding quality.

2.2 Mathematical Modelling

Application of Newton’s law to the quarter car model
shown in Figure 1 yields the governing equations in the
state space form [15, 16, 33]:

ẋ = f(x,w)+g(x)u; (1)
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y = h(x) = y1 = x2 − x1 (2)

where:

f(x,w) =
[

f1 f2 f3 f4 f5 f6
]T

, (3)

g(x) =
[

0 0 0 0 0 1
τ

]T (4)

The state vector is

x =
[

x1 x2 x3 x4 x5 x6
]T (5)

and the control input is u.

f1 = x3 (6)
f2 = x4 (7)

f3 =
1

ms

{
kl

s(x2 − x1)+ knl
s (x2 − x1)3 +bl

s(x4 − x3)

−bsym
s |x4 − x3|+bnl

s

√
|x4 − x3|sgn(x4 − x3)

−Ax5

}
(8)

f4 =
1

mu

{
−kl

s(x2 − x1)− knl
s (x2 − x1)3 −bl

s(x4 − x3)

+bsym
s |x4 − x3|−bnl

s

√
|x4 − x3|sgn(x4 − x3)

−kt(x2 −w)+Ax5

}
(9)

f5 = γΦx6 −βx5 +αA(x3 − x4) (10)

f6 =
−x6

τ
(11)

where; Φ = φ1 +φ2, φ1 = sgn[Ps − sgn(x6)x5],
φ2 =

√|Ps − sgn(x6)x5|, α = 4βe
Vt

, β = αCt p, and

γ = CdS
√

1
ρ . A is the area of the piston, x3 and x4

are the vertical velocities of the sprung and unsprung
masses respectively, x5 is the pressure drop across the
piston, x6 is the servo valve displacement, Ps is the supply
pressure going into the cylinder and Pr is the return
pressure going out of the cylinder. Pu is the oil pressure in
the upper portion of the cylinder and Pl is the oil pressure
in the lower portion of the cylinder. Vt is the total actuator
volume, βe is the effective bulk modulus of the system,
Φ is the hydraulic load flow, Ct p is the total leakage
coefficient of the piston, Cd is the discharge coefficient, S
is the spool valve area gradient and ρ is the hydraulic fluid
density.

The spring and damping forces have linear and nonlinear
components. Spring constant kl

s and damping coefficient
bl

s affects the spring force and damping force in the linear
region. bsym

s contributes an asymmetric characteristics
to the overall behaviour of the damper. knl

s and bnl
s are

responsible for the nonlinear components of the spring
and damper forces respectively.

Figure 2 illustrates the hydraulic actuator mounted in
between the sprung and unsprung masses. Qu and Ql are
the hydraulic fluid flow rates into the upper and the lower
chambers of the hydraulic cylinder respectively.

Figure 2: Schematic of the double acting hydraulic strut

The actuator is controlled by means of electro-hydraulic
servo-valves in a three land four-way spool valve system.
The maximum control input (voltage) of 10V was applied
to the servo-valves to achieve a maximum suspension
travel of 10cm.

The deterministic road disturbance used in Equation
9 is given by:

w(t) =

⎧⎨
⎩

a
2 (1− cos 2πVt

λ ) 1.25 ≤ t ≤ 1.5

0 otherwise
(12)

where a is the bump height, V is the vehicle speed and λ
is the half wavelength of the sinusoidal road undulation.
Figure 3 shows the road disturbance profile.
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Figure 3: Road profile

The values of the system parameters used in the modelling
are given in Table 1:

3. CONTROLLER DESIGN

The controller design is based on the indirect adaptive
control approach, using PID feedback control that is
complemented by feedforward generated by an inverse
neural network model. The NN-based controller
implementation requires the following two steps: system
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Figure 4: Architecture for Neural Network based System Identification and Control

Table 1: Parameters of the Quarter-Car Model [15, 16]
Parameters Value
sprung mass (ms) 290kg
unsprung mass (mu) 40kg
suspension stiffness (kl

s) 2.35∗104N/m ,
suspension stiffness (knl

s ) 2.35∗106N/m
tyre stiffness (kt ) 1.9∗105N/m
suspension damping (bl

s) 700Ns/m
suspension damping (bnl

s ) 400Ns/m
suspension damping (bsym

s ) 400Ns/m
actuator parameter (α) 4.515∗1013

actuator parameter (β) 1
actuator parameter (γ) 1.545∗109

piston area (A) 3.35∗10−4m2

supply pressure (Ps) 10,342,500Pa
time constant (τ) 3.33∗10−2sec
bump height (a) 0.11m
vehicle speed (V ) 30ms−1

disturbance half wavelength (λ) 7.5m

identification and controller design.

In order to design a NN-based controller, it is essential
to first obtain an accurate dynamic model, through
system identification, as a representation of the actual
system. Figure 4 shows the schematic architecture for
system identification and controller design of the system,
where ŷ(k) is the identified model output, d(k) is the
disturbance signal, ε(k) = y(k) − ŷ(k) the error signal,
y(k) is the controlled output, u(k) is the control input, and
e(k) = r(k)− y(k).

The main goal of the controller is to track a generated
desired suspension travel in the presence of the
deterministic road disturbance (Equation 12). The

controller should satisfy the following requirements:

1. Nominal stability: The closed loop should be
nominally stable.

2. Good command following: The controller should be
able to track a square wave reference trajectory with
rise time not greater than 0.1sec, maximum overshoot
not greater than 5% and without steady state error.

3. Disturbance rejection: The controller should demon-
strate good low frequency disturbance attenuation.

4. Performance index: The controller should minimize
the performance index given by:

J =
1
t f

∫ t f

0

[(
y(t)− yre f (t)

ymax

)2

+
(

u(t)
umax

)2
]

dt

(13)
where t f is the final time (which in this case is
5sec), yre f is the desired suspension travel, ymax is
the the maximum allowable value of the suspension
travel (controlled output), and umax is the maximum
allowable value of the supply voltage (control input).

3.1 Nonlinear System Identification

System identification stage is a function approximation
process where the dynamic model of the system
is established based on observed input-output data.
Feedforward, multilayer perceptron (MLP), error back
propagation neural network is used here for the system
identification. This is due to its simplicity and ability
to learn nonlinear relations from a set of input-output
data [22].

Training inputs are supplied to the input layer of the
network in a forward sweep such that the output of each
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element is computed layer by layer. Backpropagation
training is a process of training the network with the input
and target vectors until it can associate input vectors with
appropriate output vectors [34].

In this work, the suitability of the neural network in
developing dynamic models that is representative of the
actual nonlinear plants based on the interactions between
the inputs and outputs is exploited. The identification
process consists of the four steps shown in Figure
5: experimentation, model structure selection, model
estimation and model validation [22]. Control design
stage comes after the system identification, here the NN
plant model is used to design the controller.

Figure 5: Flowchart form of system modelling procedure

The objective of the identification process is to minimize
the error signal ε(k) = y(k)− ŷ(k), where k = 1,......,N (see
Figure 6). The NN parameters in the identification model
are adjusted in an increasing manner until the training data
satisfies the desired performance criteria, which in this
case is the sum of the mean square error (MSE) [25,34,35]:

MSE = γ
1
N

N

∑
k=1

[y(k)− ŷ(k)]2 = γ
1
N

N

∑
k=1

ε2(k) (14)

Figure 6: Basic system identification structure

where γ is the performance ratio. The choice of the
performance ratio must be considered with caution since
it represents the relative weight between the mean square
errors and the mean square network parameters (that is,

weights and biases). The choice of γ may influence the
smoothness of the network response. The sampling time
is chosen in accordance with the fastest dynamics of the
system [22, 33].

Experimentation:

The AVSS is identified from a set of input-output data pairs
collected from numerical experiments. These are given in
form of the AVSS model Equations (1) - (6) simulations
and collected in the form:

ZN = f [u(k),y(k)]; k = 1, ......,N (15)

where ZN is the input-output data set, u(k) is the input
signal, y(k) is the output signal, k is the sampling instant,
and N is the total number of samples. The input-output
data was collected using the structure illustrated by Figure
7:

Figure 7: Structure input-output data collection

The AVSS plant model identification was conducted using
a 20,000 input-output data pairs - divided into two equal
parts for training and validation as shown in Figures
8 and 9. A non-saturating “band-limited white noise”
random input was used to excite the AVSS plant in its
operating range, u(k) ∈ [−10V,+10V ]. The sampling
interval of 0.001sec was chosen in accordance with the
fastest dynamic of the system [22, 33].

Figure 8: Estimation (training) data set

Model Structure Selection:

The Neural Network AutoRegressive eXogenous inputs
(NNARX) model has been proven to readily represent any
nonlinear, discrete, time-invariant system. It is preferable
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Figure 9: Validation data set

when the system order is high, however, increasing
its order could affect some dynamic characteristics
like stability. It is also simpler, non-recursive (unlike
nonlinear models based output error (OE) and Auto
Regressive Moving Average with eXogenous inputs
(ARMAX), wherein future inputs depend on present
and future outputs) and more stable since it requires no
feedback [20,22,36]. The general structure of the NNARX
is shown in Figures 10 and 11.

Figure 10: NNARX model structure

The AVSS nonlinear system can be represented by
NNARX model structure for a finite number of past inputs
u(k) and outputs y(k) [20, 25, 37, 38]:

y(k) = f [φ(k),θ]+ϑ(k) (16)

As a result of the numerical experiment and training,
the network implements an estimation of the nonlinear
transformation, f̂ (∗) which leads to the predicted output.
The one-step ahead prediction (1-SAP) based on the
identification structure is given by:

ŷ(k) = f [φ(k),θ] (17)

and the regression vector is

φ(k) = [y(k−1),y(k−2), . . . ,y(k−na),u(k−nk),
u(k−nk −1), . . . ,u(k−nk −nb +1)

where f is the nonlinear function that is realized by the

Figure 11: Neural network nonlinear ARX Structure

neural network model, φ(k) represents the regressors,
vector θ contains the adjustable weights, ϑ(k) represents
the model residual, nk delay from input to the output in
terms of number of samples, and na and nb make up the
order of the system which is the number of output and
inputs used to predict the new output. Lipschitz algorithm
was used to the determine the system lag (see Figures 12
and 13). The figures present the plot of the order index
based on the evaluated Lipschitz quotients for the input -
output pair combinations against the lag space (number of
past inputs and outputs) ranging from 1 to 10.

Figure 12: Model order determination by lag-space method

Figure 13 shows that the slope of the graph decreases
when the model order is ≥ 2, thus defining the ”knee
point” of the curve. This leads to the choice of two as the
number of past inputs and outputs respectively; and the
number of neurons in the hidden layer becomes five since
the time delay is one [22,25]. The choice of a model order
higher than two may result in data overfitting with lower
MSE.

Model Estimation:

The neural network structures are selected for use in
the network training of the model. Simplicity of the
NN structure and computational ease are two guiding
factors considered in the model estimation process. Thus
a feedforward multilayer perceptron neural network
(MLPNN) structure that contains: an input layer, a
hidden layer and an output layer shown in Figure 14
was developed. The parameters for training of the neural
network model are listed in Table 2.



Vol.101(3) September 2010 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 99

Figure 13: Two dimensional view of the order of index versus
lag - space

Levenberg-Marquardt minimization algorithm was
used to train the network due to its rapid convergence and
robustness. The input layer contains two neurons and a
bias, the hidden layer contains five neurons with tangent
hyperbolic activation function:

f (x) = tanh(x) =
ex − e−x

ex + e−x (18)

while the output layer contains one neuron with linear

Figure 14: Neural network layer structure

activation function [21, 22, 39].

The choice of Levenberg-Marquardt training algorithm is
motivated by the results shown in Table 3. It has the least
mean square error (MSE) using the maximum number of
available epochs (300). Levenberg-Marquardt training
algorithm is also preferred to the other algorithms because
it improves over time relative to the other algorithms and it
is a compromise between the gradient descent and Newton
optimization methods [22, 34, 40].

Model Validation:

The performance of the trained network as based on the

validation data is shown in Figure 15 where the quality
of the identification is indicated by the mean square error,
which is of the order of 10−11.

Figure 15: Neural network training performance

Figure 16 presents the fitness analysis of three one-step
ahead predictions for sigmoidnet, wavenet and neuralnet
structures to the validation data. The fitness values for each
structures were 99.98%, 99.98% and 99.96% respectively.

Figure 16: Fitness analysis for one-step ahead predictions based
on sigmoidnet, wavenet and neuralnet structures

In Figure 17 the residuals were found to be of the
order of 10−8. Figure 18 shows a relatively steady
auto-correlation trend of the residuals and about 90%
of the points for cross-correlation between the input
signal and the residuals of the output (suspension travel)
falls within the 95% confidence interval. The validity
of the model is further demonstrated by the low mean
square error value (1.84492 ∗ 10−11) in Figure 15, high
percentage fitness values in Figure 16 and low order of the
residuals in Figure 17.
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Table 2: Parameters for the Neural Network Model
Parameters Value Parameters Value
Total number of samples 500 (control) Total sampling time 5sec
Number of training 300 Number of iterations 10,000
epochs Time delay 1
Training algorithm Levenberg-Marquardt Number of hidden 5

algorithm layer neurons
Number of layers 2 sampling time, Ts 0.001sec
Number of past outputs 2 Number past inputs 2

Table 3: Performance of Neural Network Training Functions
Algorithm Number of Epochs Mean Square

used out of 300 Error
1 BFGS quasi-Newton backpropagation 75 3.15857∗10−6

2 Powell-Beale conjugate 13 1.46828∗10−4

gradient backpropagation
3 Fletcher-Powell conjugate 188 4.95962∗10−6

gradient backpropagation
4 Polak-Ribiere conjugate 68 7.3317∗10−6

gradient backpropagation
5 Gradient descent backpropagation 300 9.50216∗10−3

6 Gradient descent with 300 1.00666∗10−2

momentum and adaptive backpropagation
7 Gradient descent with 243 5.07354∗10−4

adaptive learning backpropagation
8 Gradient descent with 159 1.19449∗10−4

momentum and adaptive backpropagation
9 Levenberg-Marquardt backpropagation 300 1.84492∗10−11

10 One step secant backpropagation 90 5.81278∗10−6

11 Resilient backpropagation 300 7.87337∗10−6

12 Scaled conjugate gradient backpropagation 52 1.4651∗10−5

Figure 17: Model residuals Figure 18: Auto and Cross Correlation Analysis

3.2 PID Control and Tuning

The structure of the PID controller is given as [22, 42]:

U(s) =
(

Kp
1+Tis

Tis
1+Tds

1+αTds

)
E(s) (19)

where E(s) = Yre f (s)−Y (s) is the error signal, Yre f (s) is
the reference signal, Y (s) is the actual output signal, U(s)
is the plant input signal, Kp is the proportional gain, Td is
the derivative time constant, Ti is the integral time constant
and α is the lag factor in the derivative component of the
PID controller.
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Figure 19: PID Feedback Scheme being Optimised with a Neural Network Inverse Model

Table 4: PIDNN and PID tuning parameters used
Parameters PIDNN Tuning Values PID Tuning Values
Proportional gain, Kp 6.5 3.0
Integral time, Ti 0.0238 0.0667
Derivative time, Td 0.4041 0.04035
Lag factor, α 0.0147 0.047

Ziegler-Nichols tuning rule is used with a decay ratio of
0.25 to obtain the PID controller gains. PID controllers
are known to often generate high control inputs which can
lead to saturation. Thus, efforts were made during tuning
to ensure that the control input was within the stipulated
range. The tuning parameters are presented in Table 4.

3.3 Neural Network Based Feedforward Control

The control structure in Figure 19 presents an arrangement
for a PID control feedback overlaid with a neural network
(PIDNN) inverse model. The essence of the neural
network inverse model is to optimise the performance
of the PID controller based on the principle of additive
feedforward. This method is one of the direct control
design of the neural network based control. It is sometimes
useful in regulation problems where the reference attains
constant levels for longer periods of time, it helps in
speeding up the tracking of set points changes [22].

The inverse model is illustrated in Figure 20. The
training of a network as an inverse of a system requires
the application of the system identification procedure
illustrated by Figure 5 but it is done off-line.
Moreover, the difference of the inverse NN model is in the
choice of the regressors and network output. The inverse
model is here applied to AVSS plant by inserting the
desired output, reference r(k + 1), instead of the system
output y(k + 1), which is an unknown value, at the input
point of the inverse model, this training is implemented in
the form shown in Equation 21. If the AVSS is described
by [22, 41]:

y(k +1) = g[y(k), . . . ,y(k−na +1,u(k), . . . ,u(k−nb)]
(20)

Figure 20: Direct Inverse Control

then the desired network is the one that isolates the latest
control input, u(k) given by

û(k) = ĝ−1[r(k +1),y(k), . . . ,y(k−na +1,

u(k), . . . ,u(k−nb)] (21)

the network is then trained to minimize the criterion

J(θ,ZN) =
1

2N

N

∑
k=1

[u(k)− û(k|θ)]2 (22)

The system outputs are substituted with the corresponding
feedforward component of the control input given by

u f f (k) = ĝ[r(k−1), . . . ,r(k−na +1,

u f f (k−1), . . . ,u f f (k−nb)] (23)

this can then be used to drive the system output at k +1 to
reference r(k +1) as shown in Figures 4 and 20.

The network is trained by invoking Levenberg-Marquardt
training algorithm (system identification). This was done
off-line by minimizing the criterion J(θ,ZN) where θ
specifies the weights of the network. Ziegler-Nichol’s
tuning rule, with a decay ratio of 0.25, is used to obtain the
tuning parameters for the PIDNN as presented in Table 4.
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4. RESULTS AND DISCUSSION

The physical model which is represented by Figure 1 has
been modelled mathematically in the state-space form
given by Equations 1-11. Numerical experimentation
based on the mathematical model yielded a NN model of
the plant that was used in the controller design.

The PIDNN and PID controller were applied to an
AVSS nonlinear model with actuation force generated
by an electro-hydraulic actuator. A variable but preset
control input in the form of voltage (which was ≤ 10V)
was supplied to the servo-valve to generate the actuation
force at the piston. The control problem given by Equation
1 is to obtain a control input, u(t) that follows a reference
trajectory y(t) while minimizing the performance criterion
(Equation 13). Meanwhile, the reciprocals of the
squared values of ymax and umax gives the values of the
weighting factors that was used in the computation of the
performance index.

The identification and control processes were implemented
in MATLAB using the MATLAB system identification
toolbox and neural network based control system design
(NNCNTRL20) toolboxes. The parameters used for the
simulations are given in Tables 1, 2 and 4.

Figures 21 and 22 present the command tracking of
both controllers.The PIDNN tracking is characterized by
the presence of marginal steady state error and overshoots
that diminished with time, but the trajectory tracking of
the PID appear better though its overshoots at the points
of transition is a regular feature. The maximum overshoot
measured for the PIDNN is just marginally greater than
overshoot in the PID control, but the maximum overshoots
for both controller exceed the specified values.
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Figure 21: Suspension travel reference tracking using the NN
based PID controller

Both controllers have rise times that are below the
specified value for design but the rise time for PIDNN
is 0.004sec lower than that for the PID controller. The
PIDNN controller could not also reach the zero steady
state error like the PID because of the oscilations that
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Figure 22: Suspension travel reference tracking using the PID
controller

occur just before the transition point.

Figures 23 and 24 show the cost of achieving the
performance of the PIDNN controller summarised in
Table 5 in terms of the supplied voltage to the servo valve
of the actuator as control input. The supply voltage to
the PIDNN was characterized by continuous chattering
and it exceeded the required supply voltage value in four
instances. The maximum range of the supply voltage
to the PID controller is −4.2V − 3.3V . The PID supply
voltage is also characterized by spikes at the transition
points.
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Figure 23: NN based PID control input

Complete minimization of the performance criterion could
not be achieved by both controllers but the performance
index of the PID is twice better than the performance index
of the PIDNN controller. This performance criterion has
put into consideration the sum of square of the weighted
controlled output error and the control input.

Considering the values for all the performance evaluation
parameters listed in Table 5, the overall superior
performance of the PID controller is evident but from
Figure 25, the performances of the PID controller at the
transitional points are not as physically realisable as the
PIDNN. While the PIDNN gradually returns to zero, the
PID controller shoots to higher performance index at these
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Figure 24: PID control input

points and returns to zero immediately.

Table 5: Evaluation of the controller performances
Performance Specified PIDNN PID
parameters values
Maximum overshoot ≤ 5% 27.7% 26.1%
Rise time, sec ≤ 0.1% 0.014 0.018
Steady state error 0% 4% 0%
Control input, V ±10 136% 42%
Performance index, J 0 0.057 0.025
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Figure 25: Comparison of Performance Indices at all the
Sampling Instances

5. CONCLUSION

A PID controller with a neural network feedforward
control has been designed for a nonlinear AVSS. The
system identification process to obtain an inverse NN
model for the controller design was achieved at an average
fitness value of 99.98% and prediction error with order of
10−8.

Both controllers were able to track the reference well
though with overshoots and both controllers had rise
time values that were less than the required. The supply
voltage to the PIDNN exceeded the limits at four instance
while the PID controller was always lower than the supply

voltage limit by at least 50%.

The performance index for the PID controller was twice
lower than the index for the PIDNN but examination of the
performance indices at each sampling instances showed
that, although the PID controller had better performance
than the PIDNN, it is less physically realisable than the
PIDNN control.

The choice of PIDNN over the conventional PID
control is due to drawbacks like the nonlinear nature of
AVSS and its susceptibility to parameter and disturbance
variation, often PID controller design fail to guarantee
robustness and model uncertainty.
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[41] J. Žilková, J. Timko and P. Girovský: “Nonlinear
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