
PRACTICAL ASPECTS ON SITE

Cement and Concrete

- Cement is the binding agent powder form - hardens with water
- Aggregate is Stone and Sand
- Concrete is a mixture of Cement, Sand, Stone and Water
- Plaster is Sand and Cement and Water

Concrete Works

- Be realistic about concrete spills
- All concrete structures have concrete on the ground – blinding or foundations
- Understand what is hazardous

Concrete Works

- Cement dust at a concentration exceeding 10 mg/m³ is hazardous (OHAS Act)
- Concrete slurry is hazardous due to its highly alkaline nature

 Cured concrete is not a hazardous material - reservoirs used to store drinking water

Concrete Works

- Cement dust at a concentration exceeding 10 mg/m³ is hazardous (OHAS Act)
- Comparable to wood dust and sucrose dust

Drip Trays

- Often a point of disagreement
- Must state clearly in EMP what you want

Generally they are required only when refueling. Machines that leak oil should be sent off site

The Rehabilitation Process

 Picture the final product - Desired vegetation on top soil, blended into the existing topography

What is Important

- Remove unsuitable material before replacing top soil
- Break up sub-soil compaction before re-placing top soil
- Minimise compaction during and after placing top soil

Preparation before replacing Top Soil

Break up

compaction

Replace top soil

Erosion Control

- It is a legal requirement (CARA)
- Cannot stop it can only minimise it
- What is erosion?

The Storm Water Berms

- Cross fall of 1 to 1.5%
- Sized to handle the run off
- Ideally should silt up when the vegetation establishes
- Must discharge into a "stable" area

Instant Lawn

 Good for areas of high concentration of water flow

 Often more cost effective than erosion control mats

Erosion Control: BioJute

Erosion Control: Instant lawn

Watering

- Do the sums to see how impractical this is on a large scale
- Water tanker takes 2 000 litres
- To put 10mm/week on 10ha needs 1000 000 liters OR 500 trips / week

Rivers and Wetlands

• Will always look messy

• Will repair fairly quickly if the basics are done correctly

The Rehabilitation Process

- Initial shaping (Body filler)
- Plan Erosion control
- Replace the top soil (Under coat)
- Establish vegetation (Final coat)

Timing of Rehabilitation Process

- Do not pressurise for environmental rehabilitation too soon
- Consider
 - Machine access
 - Final works to structures

Control of Alien Plants

- It is a Legal requirement
- Easier to do it regularly
- Plants should be removed before they seed

Control of Alien Plants

- Often not in BOQ
- Thus Contractor does not want to / have to do it
- Sit with the team at the start to decide how to resolve this

 Cost effective to use machines where possible – mow with tractor and slasher

• Do it regularly

• Should be specified in the EMPr

• Set up a phased hand over

• Will vary with Land use

- Agricultural land hand back once top soil is replaced
- Water courses 3 year maintenance required under Water Act
- Grassland at least two growing seasons

